Three Hypericum perforatum hairy root lines(HR B,HR F and HR H)along with non-transformed roots were analyzed for phenolic compounds composition and in vitro enzyme inhibitory properties.In silico molecular modeling w...Three Hypericum perforatum hairy root lines(HR B,HR F and HR H)along with non-transformed roots were analyzed for phenolic compounds composition and in vitro enzyme inhibitory properties.In silico molecular modeling was performed to predict the interactions of the most representative phenolic compounds in HR clones with enzymes related to depression,neurodegeneration and diabetes.Chromatographic analyses revealed that HR clones represent an efficient source of quinic acid and hydroxybenzoic acids,epicatechin and procyanidin derivatives,quercetin and kaempferol glycosides,as well numerous xanthones.In vitro antidepressant activity of HR extracts through monoamine oxidase A(MAO-A)inhibition was attributed to the production of oxygenated and prenylated xanthones.The neuroprotective potential of HR extracts was related to the accumulation of quercetin 6-C-glucoside,epicatechin,procyanidins andγ-mangostin isomers as potential inhibitors of acetylcholinesterase(AChE)and butyrylcholinesterase(BChE).Vanillic acid and prenylated xanthones in HR clones as promising inhibitors of tyrosinase additionally contributed to the neuroprotective activity.Five preeminent xanthones in HR(γ-mangostin,mangiferin,garcinone C,garcinone E and 1,3,7-trihydroxy-6-metoxy-8-prenyl xanthone)along with the flavonol quercetin 6-C-glucoside effectively inhibitedα-amylase andα-glucosidase indicating the antidiabetic properties of HR extracts.Transgenic roots of H.perforatum can be exploited for the preparation of novel phytoproducts with multi-biological activities.展开更多
In addition to six known flavonoids quercitrin, hyperoside, avicularin, rutin, quercetin and kaemferol, a new flavonol glycoside named 6″_O_acetyl quercetin 3_O_β_ D _alloside (1) was isolated from the aerial par...In addition to six known flavonoids quercitrin, hyperoside, avicularin, rutin, quercetin and kaemferol, a new flavonol glycoside named 6″_O_acetyl quercetin 3_O_β_ D _alloside (1) was isolated from the aerial parts of Hypericum perforatum L. The structures were determined on the basis of spectroscopic methods (UV, IR, FAB_MS, 1H_NMR and 13 C NMR). Antifungal assay of all compounds showed that metabolite 1, quercitrin and quercetin were inhibitory to the growth of phytopathogenic fungus Helminthosporium sativum Pamel King et Bakke with minimum inhibitory concentrations (MICs) of 25, 50 and 50 μg/mL, respectively. Moreover, glycoside 1 and quercitrin were also shown to be able to inhibit the growth of Fusarium graminearum Schw. with MIC of 100 μg/mL. The MICs of ketoconazole used as control against the test fungi were 0.5 μg/mL in our assay.展开更多
With the development of the multicellular nodules in the leaves of Hypericum per plastids increased both in number and volume, and some plastids degenerated and were surrounded by dark tubular elements and vesicles. S...With the development of the multicellular nodules in the leaves of Hypericum per plastids increased both in number and volume, and some plastids degenerated and were surrounded by dark tubular elements and vesicles. Some vesicles fused with vacuoles and secreted substances into vacuoles. There are many multivesicles, multimembrane structures and osmiophilic droplets in vacuoles of nodule cells. Meanwhile, dictyosome secreted vesicles into the vacuoles. However, there is a large central vacuole completely filled with secretory materials (hypericin) in matured multicellular nodules. This suggests that the osmiophilic droplets may be a precursor of hypericin originated from the degenerated plastids. There were abundant endoplasmic reticulums and dictyosomes between the plastids and osmiophilic droplets, suggesting that they may be involved in the synthesis and/or transport of the precursor of hypericin.展开更多
文摘Three Hypericum perforatum hairy root lines(HR B,HR F and HR H)along with non-transformed roots were analyzed for phenolic compounds composition and in vitro enzyme inhibitory properties.In silico molecular modeling was performed to predict the interactions of the most representative phenolic compounds in HR clones with enzymes related to depression,neurodegeneration and diabetes.Chromatographic analyses revealed that HR clones represent an efficient source of quinic acid and hydroxybenzoic acids,epicatechin and procyanidin derivatives,quercetin and kaempferol glycosides,as well numerous xanthones.In vitro antidepressant activity of HR extracts through monoamine oxidase A(MAO-A)inhibition was attributed to the production of oxygenated and prenylated xanthones.The neuroprotective potential of HR extracts was related to the accumulation of quercetin 6-C-glucoside,epicatechin,procyanidins andγ-mangostin isomers as potential inhibitors of acetylcholinesterase(AChE)and butyrylcholinesterase(BChE).Vanillic acid and prenylated xanthones in HR clones as promising inhibitors of tyrosinase additionally contributed to the neuroprotective activity.Five preeminent xanthones in HR(γ-mangostin,mangiferin,garcinone C,garcinone E and 1,3,7-trihydroxy-6-metoxy-8-prenyl xanthone)along with the flavonol quercetin 6-C-glucoside effectively inhibitedα-amylase andα-glucosidase indicating the antidiabetic properties of HR extracts.Transgenic roots of H.perforatum can be exploited for the preparation of novel phytoproducts with multi-biological activities.
文摘In addition to six known flavonoids quercitrin, hyperoside, avicularin, rutin, quercetin and kaemferol, a new flavonol glycoside named 6″_O_acetyl quercetin 3_O_β_ D _alloside (1) was isolated from the aerial parts of Hypericum perforatum L. The structures were determined on the basis of spectroscopic methods (UV, IR, FAB_MS, 1H_NMR and 13 C NMR). Antifungal assay of all compounds showed that metabolite 1, quercitrin and quercetin were inhibitory to the growth of phytopathogenic fungus Helminthosporium sativum Pamel King et Bakke with minimum inhibitory concentrations (MICs) of 25, 50 and 50 μg/mL, respectively. Moreover, glycoside 1 and quercitrin were also shown to be able to inhibit the growth of Fusarium graminearum Schw. with MIC of 100 μg/mL. The MICs of ketoconazole used as control against the test fungi were 0.5 μg/mL in our assay.
文摘With the development of the multicellular nodules in the leaves of Hypericum per plastids increased both in number and volume, and some plastids degenerated and were surrounded by dark tubular elements and vesicles. Some vesicles fused with vacuoles and secreted substances into vacuoles. There are many multivesicles, multimembrane structures and osmiophilic droplets in vacuoles of nodule cells. Meanwhile, dictyosome secreted vesicles into the vacuoles. However, there is a large central vacuole completely filled with secretory materials (hypericin) in matured multicellular nodules. This suggests that the osmiophilic droplets may be a precursor of hypericin originated from the degenerated plastids. There were abundant endoplasmic reticulums and dictyosomes between the plastids and osmiophilic droplets, suggesting that they may be involved in the synthesis and/or transport of the precursor of hypericin.