The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chos...The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chosen to calculate the environmental geochemical baseline.The geoaccumulation index was calculated and mapped to indicate the environmental quality of the soil.The results show that the urban areas are barely polluted with Ni and Cr but the rural areas in the southern part of the city, and the western part of the lake,are polluted with Ni,Cr,and Cu at the second level.On the other hand,the rural areas in the southern part of the city,and the western part of the lake,are polluted with As at a moderate level.The other area is polluted at the second level.An increase in As pollution occurs in a direction from northeast to southwest.The Cd pollution follows a trend similar to As,with an additional smaller contaminated area polluted at levelⅢ.The Hg pollution typical of urban areas occurs in the main and northern parts of the city.The geochemical accumulation index decreases from the city center to the periphery.The highest pollution level reaches levelⅣ,which indicates that the soil is seriously polluted with Hg.The southern part of the city and the rural areas to the west of the lake are not contaminated with Hg.Geological factors and the disturbance from human activities are both possible major factors:further research is needed to identify them.展开更多
Aims Intraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging.For plants,trait variability across spatial dimensions is well documented.However,temporal dimensio...Aims Intraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging.For plants,trait variability across spatial dimensions is well documented.However,temporal dimensions of trait variability are less well known,and may be influenced by seasonal differences in growing degree days(GDD),temperature and precipitation.Here,we aim to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly occurring boreal plant species.Methods We sampled the elemental and stoichiometric traits(%C,%N,%P,C:N,C:P,N:P)of four common browse species'foliage across 2 years.Using a two-step approach,we first fitted generalized linear models(GzLM,n=24)to the species'elemental and stoichiometric traits,and tested if they varied across years.When we observed evidence for temporal variability,we fitted a second set of GzLMs(n=8)with temperature,productivity and moisture as explanatory variables.Important Findings We found no evidence of temporal variation for most of the elemental and stoichiometric traits of our four boreal plants,with two exceptions.Year was an important predictor for percent carbon across all four species(R^(2)=0.47-0.67)and for multiple elemental and stoichiometric traits in balsam fir(5/8,R2=0.29-0.67).Thus,variation in percent carbon was related to interannual differences,more so than nitrogen and phosphorus,which are limiting nutrients in the boreal forest.These results also indicate that year may explain more variation in conifers'stoichiometry than for deciduous plants due to life history differences.GDD was the most frequently occurring variable in the second round of models(8/8 times,R^(2)=0.21-0.41),suggesting that temperature is an important driver of temporal variation in these traits.展开更多
基金supported by the National Hi-tech Research and Development Program of China(No. 2009AA12Z147)the Postdoctorial Foundation of China(No.20090451339)+2 种基金the Postdoctorial Foundation of Shandong Province(No.200802013)Soft Science Project of Shandong Province(No.2007 RKA071)this research is also supported by Qingdao Economic & Technical Developing District Project (No.2008-2-26).
文摘The geochemical baseline is the fundamental reference for environmental change and assessment.In this article we describe cluster and regression analyses with a normalization procedure.The elements Sc and Ag were chosen to calculate the environmental geochemical baseline.The geoaccumulation index was calculated and mapped to indicate the environmental quality of the soil.The results show that the urban areas are barely polluted with Ni and Cr but the rural areas in the southern part of the city, and the western part of the lake,are polluted with Ni,Cr,and Cu at the second level.On the other hand,the rural areas in the southern part of the city,and the western part of the lake,are polluted with As at a moderate level.The other area is polluted at the second level.An increase in As pollution occurs in a direction from northeast to southwest.The Cd pollution follows a trend similar to As,with an additional smaller contaminated area polluted at levelⅢ.The Hg pollution typical of urban areas occurs in the main and northern parts of the city.The geochemical accumulation index decreases from the city center to the periphery.The highest pollution level reaches levelⅣ,which indicates that the soil is seriously polluted with Hg.The southern part of the city and the rural areas to the west of the lake are not contaminated with Hg.Geological factors and the disturbance from human activities are both possible major factors:further research is needed to identify them.
基金This research was funded by the Government of Newfoundland and Labrador Centre for Forest Science Innovation(CFSI)Memorial University of Newfoundland SEEDS funding to S.J.L.,E.V.W.and Y.F.W.+3 种基金Mitacs Accelerate Grant to Y.F.W.,S.J.L.and E.V.W.Canada Foundation for Innovation funding to Y.F.W.(13025)the Natural Sciences and Engineering Research Council of Canada(Discovery Grant RGPIN-2015-05799 to Y.F.W.)In-kind support was provided by Parks Canada-Terra Nova National Park and the CFSI,with thanks to Janet Feltham and Blair Adams.
文摘Aims Intraspecific variation in plant traits has important consequences for individual fitness and herbivore foraging.For plants,trait variability across spatial dimensions is well documented.However,temporal dimensions of trait variability are less well known,and may be influenced by seasonal differences in growing degree days(GDD),temperature and precipitation.Here,we aim to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly occurring boreal plant species.Methods We sampled the elemental and stoichiometric traits(%C,%N,%P,C:N,C:P,N:P)of four common browse species'foliage across 2 years.Using a two-step approach,we first fitted generalized linear models(GzLM,n=24)to the species'elemental and stoichiometric traits,and tested if they varied across years.When we observed evidence for temporal variability,we fitted a second set of GzLMs(n=8)with temperature,productivity and moisture as explanatory variables.Important Findings We found no evidence of temporal variation for most of the elemental and stoichiometric traits of our four boreal plants,with two exceptions.Year was an important predictor for percent carbon across all four species(R^(2)=0.47-0.67)and for multiple elemental and stoichiometric traits in balsam fir(5/8,R2=0.29-0.67).Thus,variation in percent carbon was related to interannual differences,more so than nitrogen and phosphorus,which are limiting nutrients in the boreal forest.These results also indicate that year may explain more variation in conifers'stoichiometry than for deciduous plants due to life history differences.GDD was the most frequently occurring variable in the second round of models(8/8 times,R^(2)=0.21-0.41),suggesting that temperature is an important driver of temporal variation in these traits.