Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical sol...Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.展开更多
There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters ...There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.展开更多
The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they o...The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they occur,then areas heavily damaged by an earthquake can be readily identified.The information can then be used as a guide for earthquake relief programs.In this paper,an intensity offset-tracking method applied to an ALOS PALSAR image is used to map the Yushu earthquake rupture and to identify the faults activated by the earthquake.Azimuthal displacement analysis indicates that the surface rupture is about 55 km long,running from the epicenter to the southeast,trending N310°W,with a relative displacement of~1 m characterized by sinistral slip.The result of range displacement observations indicates that the north wall of the fault is dominated by decreases(i.e.,uplift in line of sight observations) ,whereas in the south wall of the fault,the range displacement is dominated by increases(drops in line of sight observations) .Given the position from which the images were recorded,this means that the north wall moves westward,and the south wall move eastward,i.e.,left-lateral slip motion across the fault.Finally,an earthquake disaster assessment using computer-assisted image analysis software shows that buildings near the fault rupture have been destroyed most heavily;therefore,the shape of the heavily damage belt is controlled partially by the fault rupture's geometry and the damage degree relates to the magnitude of displacement field.展开更多
Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent con...Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.展开更多
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of China
文摘Based on the image theory,the analytical solutions of tunneling-induced ground displacement were derived in conjunction with the nonuniform convergence model.The reasonable value of Poisson ratio in the analytical solution was discussed.The ground settlement width parameter which could reflect the ground condition was introduced to modify the analytical solutions proposed above,and new analytical solutions were presented.To evaluate the validity of the present solutions using the nonuniform convergence model,the results were compared with the observed values for four engineering projects,including 38 measured data of ground settlement.The agreement shows that the present solutions using the nonuniform convergence model are effective for evaluating the tunneling-induced ground displacements.
基金Key research project "Research of Shanghai City and Costal Heavy Fog Remote Sensing Detecting and Warning System" of Science and Technology Commission of Shanghai Municipality (075115011)
文摘There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.
基金supported by National Science and Technology Pillar Program(Grant Nos.2008BAC38B03 and 2008BAC35B04)National Natural Science Foundation of China(Grant Nos.40940020 and 40874006)the Earthquake Research Special Fund(Grant No. 200708013)
文摘The spatial distribution and characterization of a heavily damaged area can be determined by studying surface ruptures of seismogenic faults.If the distribution of surface ruptures can be obtained shortly after they occur,then areas heavily damaged by an earthquake can be readily identified.The information can then be used as a guide for earthquake relief programs.In this paper,an intensity offset-tracking method applied to an ALOS PALSAR image is used to map the Yushu earthquake rupture and to identify the faults activated by the earthquake.Azimuthal displacement analysis indicates that the surface rupture is about 55 km long,running from the epicenter to the southeast,trending N310°W,with a relative displacement of~1 m characterized by sinistral slip.The result of range displacement observations indicates that the north wall of the fault is dominated by decreases(i.e.,uplift in line of sight observations) ,whereas in the south wall of the fault,the range displacement is dominated by increases(drops in line of sight observations) .Given the position from which the images were recorded,this means that the north wall moves westward,and the south wall move eastward,i.e.,left-lateral slip motion across the fault.Finally,an earthquake disaster assessment using computer-assisted image analysis software shows that buildings near the fault rupture have been destroyed most heavily;therefore,the shape of the heavily damage belt is controlled partially by the fault rupture's geometry and the damage degree relates to the magnitude of displacement field.
基金partially supported by the National Natural Science Foundation of China(91955210,41625016,and 41888101)。
文摘Collisional orogens form when tectonic forces amalgamte fragments of Earth’s continental lithosphere.The sutures between individual fragments,or terranes,are potential sites of weakness that facilitate subsequent continental breakup.Therefore,the lithospheric architecture of collisional orogens provides key information for evaluating the long-term evolution of the continental interior:for example,the South China Block(SCB),where the tectonic history is severely obscured by extensive surface deformation,magmatism,and metamorphism.Using new passive-source seismic models,we show a contrasting seismic architecture across the SCB,with three prominent crustal dipping structures across the Jiangnan Orogen.Combined with constraints from multi-disciplinary regional geophysical datasets,these pronounced dipping patterns are interpreted as relict wedge-like lithospheric deformation zones initiated in the fossil collisions that assembled the Yangtze Block and the SCB.The overall trend of these tectonic wedges implies successive crustal growth along paleo-continental margins and is indicative of northward subduction and docking of accretional terranes.In contrast,no such dipping structures are preserved in the Cathaysia Block,indicating a weak and reorganized lithosphere.The variations in the deformation responses across the SCB reflect the long-term modifications of the lithosphere caused by prolonged collision and extension events throughout the tectonic history of the SCB.Our results demonstrate the critical roles that suture zones played in the successive growth and evolution of the continental lithosphere.