[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverag...[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverage and bare land in rainy reason in Jinsha River at Yuanmou County of Yunnan Province were observed continuously.Moreover,the statistical analysis was made based on the observation data.[Result]The vegetation coverage could decrease surface runoff and the surface runoff on bare land(CK) was 22 times as the plot with vegetation coverage.The soil water content in 0-180 cm layer with vegetation coverage increased by 37.8% than bare land.The stability of soil moisture content in deep layer was enhanced and the physical properties stability of soil was maintained.The soil moisture content in different depth of soil had significant difference and the changes of soil moisture content were obviously different.[Conclusion]The vegetation coverage of slope could change the soil hydrology obviously and keep soil moisture at the higher level,especially at soil layer below 20 cm.展开更多
In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Bas...In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.展开更多
The main purpose of the research is to study the influence on shallow ground water by heavy metal in polluted river. In the lab-scale experiment polluted rivers were simulated by domestic sewage, and three kinds of na...The main purpose of the research is to study the influence on shallow ground water by heavy metal in polluted river. In the lab-scale experiment polluted rivers were simulated by domestic sewage, and three kinds of natural sand were chosen as infiltration medium, it was found that Cr(Ⅵ)penetrated on the 13th day and then had a removal ratio of 77%-99% in coarse sand,over 91% and 96% in two kinds of medium sand. From beginning to end in column 2 and column 3 the removal ratio of lead were greater than 97%. It is difficult for Cr(Ⅵ) and lead to enter ground water. In on-site test it indicates that the concentration of Cr(Ⅵ) in No.1-3 and coal yard well along the bank of Liangshui River is not greater than background concentration in groundwater, so Cr (Ⅵ) in Liangshui River has a little influence on ground water. The mechanism of Cr(Ⅵ) removal is reducing action and sedimentation. The removal mechanism of lead primarily is chemical adsorption and generation deposit. Cr(Ⅵ) mainly is transformed to precipitation by reducing action because of abundant reduction agent in the infiltration media, so the tests indicat that polluted river is not the source of Cr (Ⅵ) pollution in ground water. Generally lead may polluted soil, but not groundwater.展开更多
In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. T...In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. The contamination removal efficiency and their trends in the wetland treatment system were studied under different hydraulic loading rates(HLR). The contamination removal efficiencies were compared according to the seasonal change under optimum HLR. The result shows that in the same season, under different hydraulic loadings ranging from 2 to 6 m3/(m2·d) at the same period, the best HLR is 4 m3/(m2·d) in the experimental system. The average removal rates of COD, TN, ammoniacal nitrogen(NH4+-N), and TP in the constructed wetland are 38.37%, 45.97%, 39.86% and 41.69%, respectively. According to China Standard for Surface Water Resources (GB3838-2002), mean effluent of COD, TN, NH4+-N and TP can nearly reach Grade Ⅲ, GradeⅤ, GradeⅠand GradeⅠ, respectively. Furthermore, treatment efficiency of the system in summer is obvious higher than that in other seasons. The expenditure of constructing the constructed wetland with the average treating capacity of 176 m3/d and lifetime of 20 years is 17075.00 RMB. The average disposal cost is summed up to 0.17 RMB/m3, which shows that the pretreatment of the micro-polluted Yellow River raw water by constructed wetland is feasible.展开更多
Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hy...Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21 st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project(ISIMIP). Results showed much larger fractional changes of annual mean Evapotranspiration(ET) per unit warming than the corresponding fractional changes of Precipitation(P) per unit warming across the country, especially for South China, which led to a notable decrease of surface water variability(P-E). Specifically, negative trends for annual mean runoff up to -0.33%/ year and soil moisture trends varying between -0.02% to -0.13%/year were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 0.41%/year and 0.90%/year, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks(e.g., floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with a steady increase of interannual variability throughout the 21 st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide a multi-scale guidance for assessing effective adaptation strategies for China on a river basin, regional, or as a whole.展开更多
基金Supported by National Key Project of Scientific and Technical Supporting Programs (2006BAC01A11 )National Natural Science Foundation of China (2006AA202A04)~~
文摘[Objective]The research aimed to study the effects of vegetation coverage on the changes of soil moisture in rainy season in dry-hot valley.[Method]The surface runoff and soil moisture of slope with vegetation coverage and bare land in rainy reason in Jinsha River at Yuanmou County of Yunnan Province were observed continuously.Moreover,the statistical analysis was made based on the observation data.[Result]The vegetation coverage could decrease surface runoff and the surface runoff on bare land(CK) was 22 times as the plot with vegetation coverage.The soil water content in 0-180 cm layer with vegetation coverage increased by 37.8% than bare land.The stability of soil moisture content in deep layer was enhanced and the physical properties stability of soil was maintained.The soil moisture content in different depth of soil had significant difference and the changes of soil moisture content were obviously different.[Conclusion]The vegetation coverage of slope could change the soil hydrology obviously and keep soil moisture at the higher level,especially at soil layer below 20 cm.
基金Supported by Pennsylvania Service Corporation at Waynesburg, Pennsylvania, USA the 0utstanding Youth Science Foundation of Henan Province (0612002100), China.
文摘In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.
文摘The main purpose of the research is to study the influence on shallow ground water by heavy metal in polluted river. In the lab-scale experiment polluted rivers were simulated by domestic sewage, and three kinds of natural sand were chosen as infiltration medium, it was found that Cr(Ⅵ)penetrated on the 13th day and then had a removal ratio of 77%-99% in coarse sand,over 91% and 96% in two kinds of medium sand. From beginning to end in column 2 and column 3 the removal ratio of lead were greater than 97%. It is difficult for Cr(Ⅵ) and lead to enter ground water. In on-site test it indicates that the concentration of Cr(Ⅵ) in No.1-3 and coal yard well along the bank of Liangshui River is not greater than background concentration in groundwater, so Cr (Ⅵ) in Liangshui River has a little influence on ground water. The mechanism of Cr(Ⅵ) removal is reducing action and sedimentation. The removal mechanism of lead primarily is chemical adsorption and generation deposit. Cr(Ⅵ) mainly is transformed to precipitation by reducing action because of abundant reduction agent in the infiltration media, so the tests indicat that polluted river is not the source of Cr (Ⅵ) pollution in ground water. Generally lead may polluted soil, but not groundwater.
基金the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA06Z303).
文摘In order to investigate the feasibility of pretreating the micro-polluted Yellow River raw water by constructed wetland, an experiment was conducted using a surface flow constructed wetland with composite plant bed. The contamination removal efficiency and their trends in the wetland treatment system were studied under different hydraulic loading rates(HLR). The contamination removal efficiencies were compared according to the seasonal change under optimum HLR. The result shows that in the same season, under different hydraulic loadings ranging from 2 to 6 m3/(m2·d) at the same period, the best HLR is 4 m3/(m2·d) in the experimental system. The average removal rates of COD, TN, ammoniacal nitrogen(NH4+-N), and TP in the constructed wetland are 38.37%, 45.97%, 39.86% and 41.69%, respectively. According to China Standard for Surface Water Resources (GB3838-2002), mean effluent of COD, TN, NH4+-N and TP can nearly reach Grade Ⅲ, GradeⅤ, GradeⅠand GradeⅠ, respectively. Furthermore, treatment efficiency of the system in summer is obvious higher than that in other seasons. The expenditure of constructing the constructed wetland with the average treating capacity of 176 m3/d and lifetime of 20 years is 17075.00 RMB. The average disposal cost is summed up to 0.17 RMB/m3, which shows that the pretreatment of the micro-polluted Yellow River raw water by constructed wetland is feasible.
基金supported by the National Natural Science Foundation of China(Grant No.41171031)National Basic Research Program of China(Grant No.2012CB955403)+3 种基金Hundred Talents Program of the Chinese Academy of Sciences conducted under the framework of ISI-MIPThe ISIMIP Fast Track Project was funded by the German Federal Ministry of Education and Research(BMBF)(Grant No.01LS1201A)supported by Office of Science of the U.S.Department of Energy through the Regional and Global Climate Modeling ProgramPNNL is operated for the US DOE by Battelle Memorial Institute(Grant No.DE-AC05-76RL01830)
文摘Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21 st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project(ISIMIP). Results showed much larger fractional changes of annual mean Evapotranspiration(ET) per unit warming than the corresponding fractional changes of Precipitation(P) per unit warming across the country, especially for South China, which led to a notable decrease of surface water variability(P-E). Specifically, negative trends for annual mean runoff up to -0.33%/ year and soil moisture trends varying between -0.02% to -0.13%/year were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 0.41%/year and 0.90%/year, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks(e.g., floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with a steady increase of interannual variability throughout the 21 st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide a multi-scale guidance for assessing effective adaptation strategies for China on a river basin, regional, or as a whole.