土壤含水量是气候、水文和生态等研究的重要参数。地表温度-植被指数特征空间法是遥感监测土壤含水量的常用方法。以欧洲伊比利亚半岛为研究区,使用MSG-SEVIRI(Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imag...土壤含水量是气候、水文和生态等研究的重要参数。地表温度-植被指数特征空间法是遥感监测土壤含水量的常用方法。以欧洲伊比利亚半岛为研究区,使用MSG-SEVIRI(Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager)晴空数据,构建地表温度日较差-植被覆盖度特征空间。在此特征空间上,结合研究区土壤质地数据,建立土壤含水量反演模型反演土壤体积含水量。利用西班牙REMEDHUS (REd de MEDiciòn de la HUmedad del Suelo)土壤含水量观测网络的实测数据对反演结果进行验证,均方根误差均在0. 05 m^3/m^3以内,具有较高的精度。与常用的地表温度-植被覆盖度特征空间的结果对比证明,以地表温度日较差替代地表温度,能够减小地表温度反演误差导致的土壤含水量估算误差,从而提高土壤含水量反演精度。展开更多
文摘土壤含水量是气候、水文和生态等研究的重要参数。地表温度-植被指数特征空间法是遥感监测土壤含水量的常用方法。以欧洲伊比利亚半岛为研究区,使用MSG-SEVIRI(Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager)晴空数据,构建地表温度日较差-植被覆盖度特征空间。在此特征空间上,结合研究区土壤质地数据,建立土壤含水量反演模型反演土壤体积含水量。利用西班牙REMEDHUS (REd de MEDiciòn de la HUmedad del Suelo)土壤含水量观测网络的实测数据对反演结果进行验证,均方根误差均在0. 05 m^3/m^3以内,具有较高的精度。与常用的地表温度-植被覆盖度特征空间的结果对比证明,以地表温度日较差替代地表温度,能够减小地表温度反演误差导致的土壤含水量估算误差,从而提高土壤含水量反演精度。