Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the ...Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.展开更多
Surface morphology of soil cracks is one of the important factors influencing the water evaporation rate in cracked soil in Yuanmou Dry-hot Valley Region,Southwest China. Quantitative study of the complicated surface ...Surface morphology of soil cracks is one of the important factors influencing the water evaporation rate in cracked soil in Yuanmou Dry-hot Valley Region,Southwest China. Quantitative study of the complicated surface morphology of soil cracks is a prerequisite for further studies of soil-cracking mechanisms. The present paper establishes a quantitative indicator system by application of concepts and methods originating from Fractal Geometry and Network Analysis. These indicators can effectively express the complicated features of soil-crack network structure. Furthermore,a series of values related to soil-crack morphology was obtained by image processing on field photos of soil-crack quads,and gradation criteria for the degree of development of soil cracks were determined. Finally,the changes in values of the morphological indicators under different degrees of development were analyzed in detail. Our results indicate that (1) the degree of development of soil cracks can be divided into five grades,i.e.,feeble development,slight development,medium development,intensive development and extremely intensive development; (2) the values of the indicators change predictably with increasing degree of development of soil cracks. The area density (Dc) increases,and both the area-weighted mean ratio of crack area to perimeter (AWMARP),which reflects the intensity of cracking,and the index r,which is related to the connectivity of a soil crack,grow uniformly (albeit with different forms). AWMRAP increases at a geometric rate while r shows logarithm-mic growth,indicating a gradual increase in theconnectivity of a soil crack. Nevertheless,the area-weighted mean of soil-crack fractal dimension (AWMFRAC) shows a decreasing trend,indicating a gradual decline in the complexity of cracks as area density increases.展开更多
Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic moni...Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.展开更多
Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well a...Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.展开更多
Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in th...Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.展开更多
A comprehensive investigation was performed for repairing the different types of cracks appearing on the surface or inside the concrete lining at various depths.The mate- rial properties used in grouting and two metho...A comprehensive investigation was performed for repairing the different types of cracks appearing on the surface or inside the concrete lining at various depths.The mate- rial properties used in grouting and two methods for crack repair were discussed in details, and consequently reliable repair measures were proposed and implemented.It is a better choice to adopt the hole-drilling method for the relatively regular crack.The grouting pres- sure should not be too high and it is generally between 0.4~0.6 MPa.For the second time grouting,the pressure maybe increased to 0.8 MPa.Other method is the pasting nozzles method which is more suitable for irregular cracks such as cracks with intensive density and crossing cracks.Its grouting pressure is generally between 0.6~1.0 MPa.The in-situ tests in Three Gorges Project demonstrate favorably the feasibility and applicability of the proposed methods for crack repair within the lining concrete.展开更多
Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones an...Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.展开更多
Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of ...Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.展开更多
By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found t...By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found that zonal disintegration is a large scale shear-slip failure developed in deep surrounding rock mass under tri-axial stress, which is accompanied by a large amount of tensile failure. The distance between fractures and the number of fractures have a close correlation with the rock mass heterogeneity. With an increase of the homogeneity index of the rock mass, the distances between fractures decrease and the number of fractures increases. For an intact hard rock mass with relative high homogeneity, only failure mode characterized as v-shaped notches can be formed due to the intersection of intensively developed shear bands. None of the zonal disintegration can be formed due to the fact that with increasing homogeneity, the failure mechanism of rock mass is gradually dominated by shear failure rather than tensile failure.展开更多
Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for ...Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.展开更多
Using ELLS-1/2 radar satellite data, we generated a Digital Elevation Model by Interferometric Synthetic Aperture Radar, and the ERS-1/2 DEM that we generated is obviously superior to both the 1/25 ten thousand-scale ...Using ELLS-1/2 radar satellite data, we generated a Digital Elevation Model by Interferometric Synthetic Aperture Radar, and the ERS-1/2 DEM that we generated is obviously superior to both the 1/25 ten thousand-scale DEM of the National Fundamental Geographic Information System of China and the 90-m spatial resolution's SRTM DEM that America published in 2004 when it showed the characteristics of tiny structure relief. By analyzing the relief characteristics of the Bengcuo fault zone based on ERS-1/2 DEM, we find that the relief on the connection location of the Bengcuo and Pengcuo fault zones has complex characteristics. A structure relief that is similar to the Pengcuo fault zone crosses through the Dazi-Dasha fault on the the Bengcuo fault zone, while the Dazi-Dasha fault crosses through a gully at this place. This indicates that the Dazi-Dasha fault has been active at this place recently. At the same time, the Naka-Naduiduo fault is severed by the gully which was cut through by the Dazi-Dasha fault. Therefore, the Naka-Naduiduo fault was formed earlier than the Dazi-Dasha fault.展开更多
The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulati...The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.展开更多
Based on the seismic data of near-field source from the Shandong Digital Seismic Network,this study obtained the shear-wave splitting parameters from multiple stations. The results show that dominant directions of pol...Based on the seismic data of near-field source from the Shandong Digital Seismic Network,this study obtained the shear-wave splitting parameters from multiple stations. The results show that dominant directions of polarizations of fast shear-waves reflect the spatial distribution characteristics of tectonic stress in this area,CHD and LIS stations show 2 dominant directions,and reveals that the crustal seismic anisotropy in the Shandong area is constrained by the regional stress background,local failure and structure.展开更多
Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery ...Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.展开更多
There exists frost damage in cold-region tunnels. The circumferential cracks affect the function of tunnels. Using three-dimensional finite element method, the authors analyzed the mechanism of circumferential cracks ...There exists frost damage in cold-region tunnels. The circumferential cracks affect the function of tunnels. Using three-dimensional finite element method, the authors analyzed the mechanism of circumferential cracks in cold-region tunnels It is proved that the internal thermal stress in lining exceeds the tensile strength of concrete, which is the direct cause for circumferential cracks occurring. The laws of thermal stress in lining induced by parameters such as temperature drop, horizontal drag coefficient and length of lining are analyzed. The conclusions are valuable to the design and construction of cold-region tunnels considering the thermal stress.展开更多
Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been perfor...Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.展开更多
The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimate...The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.展开更多
A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb fa...A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb failure stress. The results show that a group of strong aftershocks which occurred at the end of July to early August in 2008 at the north of Wenchuan were obviously triggered by earth tide, the same conclusion is drawn by Schusters smooth test of the tidal force, tidal stress and tidal coulomb failure stress. In addition, the Wenchuan aftershock activity is obviously triggered by fortnight tide. In the north, the aftershocks happened more frequently in the first and last quarters of the moon, and in the south, the aftershocks happened more frequently in the first and last quarters of the moon and during the full moon.展开更多
The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there o...The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there on May 12, 2008), Minjiang fault zone, and Dongkunlun fault zone, which are all active. It runs over the Yangtze River and the Yellow River, and crosses high mountains and deep valleys. There exists, along the railway's alignment, different kinds of strata of hard granite and soft, weak metamorphic rocks such as carbonaceous slate, schist, and phyllite. It is, therefore, a key issue for such an infrastructure construction to assess the engineering geological conditions and risks, so as to mitigate or avoid possible georisks and to offer optional designs. Geological survey and georisk assessment along the railway corridor are carried out. Special attention is given to active faults, earthquakes and seismic zones. Based on these, discussions about geological aspects for route selection of the railway are conducted and countermeasures for georisk control are proposed accordingly. Main conclusions are achieved as follows: (1) Geohazards such as landslides, rockfalls and debries flows dominate both the route selection of the railway and the engineering structures (e.g., tunnels or bridges) adopted; (2) Tunnel has been proved to be an excellent structure for linear engineering in geologically active area; and (3) In the case where avoiding is impractical, necessary protection measures should be taken to engineering slopes in high earthquake intensity areas, especially the area with earthquake of Ms. 8 or greater.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40901009)National Key Technologies Research and Development Program in the Eleventh Five-Year Plan of China (No. 2008BAD98B02, 2006BAC01A11)+1 种基金the Western Light Program of Talents Cultivating of Chinese Academy of Sciences (2008)the Foundation of Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences
文摘Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.
基金supported by the National Key Technologies Research and Development Program in the Eleventh Five-Year Plan of China (Grant No.2008BAD98B02, 2006BAC01A11)the Western Light Program of Talents Cultivating of CAS (2008)+1 种基金the National Natural Sciences Foundation of China (Grant No. 30470297)the Foundation of Key Laboratory of Mountain Hazards and Surface Process, CAS
文摘Surface morphology of soil cracks is one of the important factors influencing the water evaporation rate in cracked soil in Yuanmou Dry-hot Valley Region,Southwest China. Quantitative study of the complicated surface morphology of soil cracks is a prerequisite for further studies of soil-cracking mechanisms. The present paper establishes a quantitative indicator system by application of concepts and methods originating from Fractal Geometry and Network Analysis. These indicators can effectively express the complicated features of soil-crack network structure. Furthermore,a series of values related to soil-crack morphology was obtained by image processing on field photos of soil-crack quads,and gradation criteria for the degree of development of soil cracks were determined. Finally,the changes in values of the morphological indicators under different degrees of development were analyzed in detail. Our results indicate that (1) the degree of development of soil cracks can be divided into five grades,i.e.,feeble development,slight development,medium development,intensive development and extremely intensive development; (2) the values of the indicators change predictably with increasing degree of development of soil cracks. The area density (Dc) increases,and both the area-weighted mean ratio of crack area to perimeter (AWMARP),which reflects the intensity of cracking,and the index r,which is related to the connectivity of a soil crack,grow uniformly (albeit with different forms). AWMRAP increases at a geometric rate while r shows logarithm-mic growth,indicating a gradual increase in theconnectivity of a soil crack. Nevertheless,the area-weighted mean of soil-crack fractal dimension (AWMFRAC) shows a decreasing trend,indicating a gradual decline in the complexity of cracks as area density increases.
基金National key R&D plan(2016YFC060110605)National major projects(2016ZX05034004-005)。
文摘Hydraulic fracturing technology is an important means of shale gas development,and microseismic monitoring is the key technology of fracturing effect evaluation.In this study,hydraulic fracturing and microseismic monitoring were simultaneously conducted in the Eyangye 2HF well(hereinafter referred to as EYY2HF well).The target stratum of this well is the second member of the Doushantuo Formation of the Sinian System,which is the oldest stratum of horizontal shale gas wells in the world.A total of 4341 microseismic fracturing events were identified,and 23 fracturing stages of the well were defined.The fluctuation of the number of events showed a repeating“high-low”pattern,and the average energy of these events showed minimal differences.These findings indicate that the water pressure required for the reconstruction of the EYY2HF well is appropriate.The main body of the fracture network extended from northwest to southeast,consistent with the interpretation of regional geological and seismic data.The stimulated rock volumes showed a linear increase with the increase of the fracturing stage.Some technological measures,such as quick lift displacement,quick lift sand ratio,and pump stop for secondary sand addition,were adopted during fracturing to increase the complexity of the fracture network.Microseismic fracture monitoring of the well achieved expected eff ects and guided real-time fracturing operations and fracturing eff ect evaluation.
文摘Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.
基金financially supported by the National Basic Research program(973 program)of China(Grant No.2013CB733201)the Key Program of the Chinese Academy of Sciences(KZZD-EW-05-01)the“Hundred Talents”program of Chinese Academy of Sciences for supporting the research
文摘Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.
基金the National Natural Science Foundation of China(10602049)
文摘A comprehensive investigation was performed for repairing the different types of cracks appearing on the surface or inside the concrete lining at various depths.The mate- rial properties used in grouting and two methods for crack repair were discussed in details, and consequently reliable repair measures were proposed and implemented.It is a better choice to adopt the hole-drilling method for the relatively regular crack.The grouting pres- sure should not be too high and it is generally between 0.4~0.6 MPa.For the second time grouting,the pressure maybe increased to 0.8 MPa.Other method is the pasting nozzles method which is more suitable for irregular cracks such as cracks with intensive density and crossing cracks.Its grouting pressure is generally between 0.6~1.0 MPa.The in-situ tests in Three Gorges Project demonstrate favorably the feasibility and applicability of the proposed methods for crack repair within the lining concrete.
基金supported by a grant from the Ministry of Land and Resources(Project No:19961300002011)for the regional geological survey of the Jinggangshan City section,Yaqian section,Tianhe section,Nashan section of the 1:50,000 geologic mapa key orientation grant(No.KZCXZ-SW-117)of CAS Knowledge Innovation Project for the constitution,structure and evolution of the geotectonic systems of South China Sea and its adjacent regions.
文摘Nappe structure, as was first discovered by the authors during the regional geological survey at the scale of 1:50,000 in The Jinggang Mountain, is mainly comprised of a series of NNE-NE-striking thrust fault zones and thrust sheets among them. Sinian, Cambrian, Ordovician, Devonian, Carboniferous,Triassic, Jurassic and Cretaceous strata are involved in the thrust nappe system. The nappe structure is of the type of duplex structures formed as a result of the earlier stage migration from SE to NW and late stage migration from E to W of sedimentary cover or basement strata. Formation of the nappe structure in the studied area involves two main epochs: Early Yanshanian and Late Yanshanian to Early Himalayan. The mineral deposits and the buried coalfields in the area, especially the latter, are extensively controlled by the nappe structure.
基金Projects funded by the National Key Basic Research Development Program(No.2013CB227904)the National Natural Science Foundation of China(No.41272389)+1 种基金China Postdoctoral Science Foundation(No.2014M561931)the Natural Science Foundation of Hebei Province(No.D2014402007)
文摘Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.
基金supported by the National Natural Science Foundation of China (Nos. 51304036, 51222401 and 51174045)the Fundamental Research Funds for the Central Universities of China(Nos. N120101001 and N120601002)+1 种基金the National Basic Research Program of China (No. 2013CB227900)the China-South Africa Joint Research Program (No. 2012DFG71060)
文摘By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found that zonal disintegration is a large scale shear-slip failure developed in deep surrounding rock mass under tri-axial stress, which is accompanied by a large amount of tensile failure. The distance between fractures and the number of fractures have a close correlation with the rock mass heterogeneity. With an increase of the homogeneity index of the rock mass, the distances between fractures decrease and the number of fractures increases. For an intact hard rock mass with relative high homogeneity, only failure mode characterized as v-shaped notches can be formed due to the intersection of intensively developed shear bands. None of the zonal disintegration can be formed due to the fact that with increasing homogeneity, the failure mechanism of rock mass is gradually dominated by shear failure rather than tensile failure.
基金This research is supported by the National Key Basic Research 973 Project(Grant No.:2008CB425701)the Special Project M7.0~8.0 of China Earthquake Administration
文摘Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.
基金This project was sponsored bythe Special Programof Social Public Welfare Research of the Ministry of Science and Technology of PRC(2002D1A10001)
文摘Using ELLS-1/2 radar satellite data, we generated a Digital Elevation Model by Interferometric Synthetic Aperture Radar, and the ERS-1/2 DEM that we generated is obviously superior to both the 1/25 ten thousand-scale DEM of the National Fundamental Geographic Information System of China and the 90-m spatial resolution's SRTM DEM that America published in 2004 when it showed the characteristics of tiny structure relief. By analyzing the relief characteristics of the Bengcuo fault zone based on ERS-1/2 DEM, we find that the relief on the connection location of the Bengcuo and Pengcuo fault zones has complex characteristics. A structure relief that is similar to the Pengcuo fault zone crosses through the Dazi-Dasha fault on the the Bengcuo fault zone, while the Dazi-Dasha fault crosses through a gully at this place. This indicates that the Dazi-Dasha fault has been active at this place recently. At the same time, the Naka-Naduiduo fault is severed by the gully which was cut through by the Dazi-Dasha fault. Therefore, the Naka-Naduiduo fault was formed earlier than the Dazi-Dasha fault.
基金Projects(50820125405, 51004020, 51174039, 4112265) supported by the National Natural Science Foundation of ChinaProject(201104563) supported by the China Postdoctoral Science Foundation+3 种基金Project(2011CB013503) supported by the National Basic Research Program of ChinaProject(51274053) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200960) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NECT-09-0258) supported by the New Century Excellent Talents in University of China
文摘The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.
基金sponsored by the Natural Science of Shandong Province(ZH2014DQ019)Earthquake Science and Technology Spark Plan(XH15026)+1 种基金Key Foundation Program of Earthquake Administration of Shandong Province(JJ1407Y)the Contract Program of Earthquake Administration of Shandong Province(15Y102)
文摘Based on the seismic data of near-field source from the Shandong Digital Seismic Network,this study obtained the shear-wave splitting parameters from multiple stations. The results show that dominant directions of polarizations of fast shear-waves reflect the spatial distribution characteristics of tectonic stress in this area,CHD and LIS stations show 2 dominant directions,and reveals that the crustal seismic anisotropy in the Shandong area is constrained by the regional stress background,local failure and structure.
基金jointly supported by National Science Foundation of China(41302171)Active Fault Exploration in China(60112304)Basic Scientific Research Funds of China Earthquake Administration(2014IES0401,2012IES010303)
文摘Since 2001, there have occurred in succession the 2001 Kunlun Mountains M S8. 1earthquake,the 2008 Wenchuan M S8. 0 earthquake,the 2010 Yushu M S7. 1 earthquake and the 2012 Lushan M S7. 0 earthquake in the periphery of the Bayan Har block. By comparison of the characteristics of seismic strain release variations before and after the Kunlun Mountains M S8. 1 earthquake in the same time length in the geodynamical related regions,we found that the seismic strain release was obviously enhanced after the earthquake in the Longmenshan area,Batang area,and the NS-trending valleys at the west of the Hot Spring Basin. The Wenchuan earthquake occurred in the first area,and the Yushu earthquake is related to the second area. After the earthquake rupture occurred on the East Kunlun fault zone on the northern boundary of the Bayan Har Block,crustal materials on the south side of the fault zone migrated to the southeast,leading to a concentration of tectonic deformation in the Longmenshan thrust belt, e ventually rupturing on the Longmenshan thrust belt. This earthquake case illustrates that seismicity enhancement zones are possibly prone to long-term destructive earthquakes. After the M S7. 3 earthquake in Yutian,Xinjiang on February 12,2014,earthquake frequency and seismic strain release markedly increased in the junction area between the eastern Qilian Mountain tectonic belt and the Altun Tagh fault zone,where more attention should be paid to the long-term seismic risk.
基金Project supported by Jilin University Scientific Frontier and Interdisciplinary Innovation (No.200903195)
文摘There exists frost damage in cold-region tunnels. The circumferential cracks affect the function of tunnels. Using three-dimensional finite element method, the authors analyzed the mechanism of circumferential cracks in cold-region tunnels It is proved that the internal thermal stress in lining exceeds the tensile strength of concrete, which is the direct cause for circumferential cracks occurring. The laws of thermal stress in lining induced by parameters such as temperature drop, horizontal drag coefficient and length of lining are analyzed. The conclusions are valuable to the design and construction of cold-region tunnels considering the thermal stress.
基金Funded as a sub-project entitled"Tectonic Patterns of Strong Earthquakes in the Central Asia Continent and Its Dynamic Setting(2008CB425703)"within the project"A Study on the Occurrence Mechanism of the Wenchuan Earthquake and Its Large-scale Regional Dynamic Setting" under the National Key Basic R & D Program (973 Program),China
文摘Based on the collection of active fault slip rate data of large intra-continental shallow thrust earthquakes occurring in the triangular seismic region of the East Asia continent,a preliminary analysis has been performed with results showing that the Wenchuan,Sichuan, China earthquake ( MS = 8.0) of May 12,2008 occurred on the Longmenshan Mountain active fault with an abnormally low slip rate.
基金Supported by Project of the Foundation of China Geological Survey(No.1212010071012)supported by the foundation of China Geological Survey Project(1212010071012)
文摘The mylonites occurred in the fracture zones are studied by dynamically recrystallized quartz grains.The natural microstructures in mylonites are simulated and the deformation conditions of mylonitization are estimated by fractal analysis,recrystallized grain size paleopiezometer and flow laws of quartzite.Depending on fractal analysis,the deformation temperature of mylonitization is approximately 600℃,which presents high greenschist facies to low amphibolite facies.The mylonitization occurred at differential stresses of 9.1--10.7MPa(lower limits).Compared with extrapolation of quartzite flow laws and estimates of fractal analysis,the strain rate of mylonitization is under 10-13.8/s.
基金sponsored by the National Key Technology R&D Program,China(2008BAC38B03)
文摘A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb failure stress. The results show that a group of strong aftershocks which occurred at the end of July to early August in 2008 at the north of Wenchuan were obviously triggered by earth tide, the same conclusion is drawn by Schusters smooth test of the tidal force, tidal stress and tidal coulomb failure stress. In addition, the Wenchuan aftershock activity is obviously triggered by fortnight tide. In the north, the aftershocks happened more frequently in the first and last quarters of the moon, and in the south, the aftershocks happened more frequently in the first and last quarters of the moon and during the full moon.
基金supported by a grant from the Major State Basic Research Development Program of China(973Program)(Grant No.2013CB733202)the team research fund of the State Key Laboratory of Geohazards Prevention and Geoenvironment Protection(Grant No.SKLGP)
文摘The Cheng-Lan railway links Chengdu, a central city in Southwestern China, and Lanzhou, a central city in Northwestern China. The railway passes through the Longmenshan fault zone (Wenchuan earthquake happened there on May 12, 2008), Minjiang fault zone, and Dongkunlun fault zone, which are all active. It runs over the Yangtze River and the Yellow River, and crosses high mountains and deep valleys. There exists, along the railway's alignment, different kinds of strata of hard granite and soft, weak metamorphic rocks such as carbonaceous slate, schist, and phyllite. It is, therefore, a key issue for such an infrastructure construction to assess the engineering geological conditions and risks, so as to mitigate or avoid possible georisks and to offer optional designs. Geological survey and georisk assessment along the railway corridor are carried out. Special attention is given to active faults, earthquakes and seismic zones. Based on these, discussions about geological aspects for route selection of the railway are conducted and countermeasures for georisk control are proposed accordingly. Main conclusions are achieved as follows: (1) Geohazards such as landslides, rockfalls and debries flows dominate both the route selection of the railway and the engineering structures (e.g., tunnels or bridges) adopted; (2) Tunnel has been proved to be an excellent structure for linear engineering in geologically active area; and (3) In the case where avoiding is impractical, necessary protection measures should be taken to engineering slopes in high earthquake intensity areas, especially the area with earthquake of Ms. 8 or greater.