Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magm...Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.展开更多
In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late ...In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late Permian) mudstone samples in Panxian county, carrying out ICP-MS and XRD analysis. The results show that the amount of REEs (185.56-729.46 ×10-6) is high. The ratios of w(LREE)/w(HREE) (6.84- 13.86) and W(La)N/w(Yb)N (1.01-3.02) show clear differentiation of LREEs and HREEs. ZREE has a significantly or critically positive correlation with lithophile elements Th, Nb, Ta, Ti, Ca, Sc, Cs, Zr, Hf, Sr, Be and chaicophile element Zn, a critically negative correlation with siderophile element Fe and a slightly positive correlation with illite, illite smectite mixed layers and siderite. REEs originate mainly from terrigenous minerals, in an inorganic phase, Source rocks of our samples consist of Emeishan basalt and a small part of sedimentary rocks, as suggested by the distribution patterns of REEs and w(∑REE)- w(La)/w(Yb) diagram. Moreover, abnormal surfaces near the sequence boundaries (SB2, SB3, SB4) are related wiLth the boundaries, identified by geochemical characteristics of the REEs, such as ∑REE. w(LREE)/w(HREE), Eu/Eu* and Ceanom.展开更多
Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characte...Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characters of the coals have not been done so far. This investigation is an attempt for petrographic and geochemical appraisal of the coals. Moreover, effort is also made for possible interpretation on development of coal facies. The results drawn from 30 composite coal samples suggest coals are rich in vitrinite, with collotelinite as the dominant maceral while liptinite macerals register low concentration. Dominant mineral assemblages found were clay minerals, pyrite was recorded as disseminated, framboidal and euhedral forms, carbonates recorded were mainly siderites. The vitrinite reflectance random (VRo) mean values range from 0.44 % to 0.56 %, and the rank of coal is suggested as high volatile 'B' to 'A' sub- bituminous in rank. The rock-eval pyrolysis reveal TOC content varying from 37 % to 68.83 %, while low hydrocarbon generating potential is evident from low $2 and Tmax values. The Hydrogen Index (HI) versus Oxygen Index (OI) plot reveal that the samples belong to Kerogen type--II-III with input dominantly from terrestrial source, some samples also fall in Kerogen type--II domain indicating lacustrine input. Vitrinite reflectance result indicate that the samples are immature and approaching oil window, which is in agreement with data of the Rock-Eval parameters. The gelification index (GI) and tissue preservation index (TPI) indicate that the coal developed in a telematic set up with high tree density. The ground water index (GWI) and vegetation index (VI) demonstrate that the peat developed as an ombrogenous bog.展开更多
基金Project(20091100704)supported by the Special Funds for Scientific Research of Land and Natural Resources,ChinaProject(2015CX008)supported by the Innovation Driven Plan of Central South University,China
文摘Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 40730422)
文摘In order to discuss the geochemical characteristic of REEs (rare earth elements) and their geological application, we measured the contents of rare earth elements, trace elements and minerals of 29 Lopingian (Late Permian) mudstone samples in Panxian county, carrying out ICP-MS and XRD analysis. The results show that the amount of REEs (185.56-729.46 ×10-6) is high. The ratios of w(LREE)/w(HREE) (6.84- 13.86) and W(La)N/w(Yb)N (1.01-3.02) show clear differentiation of LREEs and HREEs. ZREE has a significantly or critically positive correlation with lithophile elements Th, Nb, Ta, Ti, Ca, Sc, Cs, Zr, Hf, Sr, Be and chaicophile element Zn, a critically negative correlation with siderophile element Fe and a slightly positive correlation with illite, illite smectite mixed layers and siderite. REEs originate mainly from terrigenous minerals, in an inorganic phase, Source rocks of our samples consist of Emeishan basalt and a small part of sedimentary rocks, as suggested by the distribution patterns of REEs and w(∑REE)- w(La)/w(Yb) diagram. Moreover, abnormal surfaces near the sequence boundaries (SB2, SB3, SB4) are related wiLth the boundaries, identified by geochemical characteristics of the REEs, such as ∑REE. w(LREE)/w(HREE), Eu/Eu* and Ceanom.
文摘Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characters of the coals have not been done so far. This investigation is an attempt for petrographic and geochemical appraisal of the coals. Moreover, effort is also made for possible interpretation on development of coal facies. The results drawn from 30 composite coal samples suggest coals are rich in vitrinite, with collotelinite as the dominant maceral while liptinite macerals register low concentration. Dominant mineral assemblages found were clay minerals, pyrite was recorded as disseminated, framboidal and euhedral forms, carbonates recorded were mainly siderites. The vitrinite reflectance random (VRo) mean values range from 0.44 % to 0.56 %, and the rank of coal is suggested as high volatile 'B' to 'A' sub- bituminous in rank. The rock-eval pyrolysis reveal TOC content varying from 37 % to 68.83 %, while low hydrocarbon generating potential is evident from low $2 and Tmax values. The Hydrogen Index (HI) versus Oxygen Index (OI) plot reveal that the samples belong to Kerogen type--II-III with input dominantly from terrestrial source, some samples also fall in Kerogen type--II domain indicating lacustrine input. Vitrinite reflectance result indicate that the samples are immature and approaching oil window, which is in agreement with data of the Rock-Eval parameters. The gelification index (GI) and tissue preservation index (TPI) indicate that the coal developed in a telematic set up with high tree density. The ground water index (GWI) and vegetation index (VI) demonstrate that the peat developed as an ombrogenous bog.