The mineral components and microstructure of soft rock sampled from roadway floor in Xiagou pit are determined by X ray diffraction and scanning electron microscope. Combined with the test of expansion and water softe...The mineral components and microstructure of soft rock sampled from roadway floor in Xiagou pit are determined by X ray diffraction and scanning electron microscope. Combined with the test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.展开更多
Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South...Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South American Mollisols were developed on Pleistocene and Holocene sediments and lie within the limits of the temperate zone, though the extreme north is bordering subtropical and the extreme south is within a cold-temperate zone. All suborders of Mollisols occur in Argentina, the most extensive being Udolls followed by Ustolls, whereas only Udolls, Aquolls and Albolls occur in Uruguay. Vertisols in Uruguay have many properties similar to Mollisols, and the occurrence of Vertisols is strongly associated with Mollisols. The Pampean Mollisols are a significant component of the global breadbasket of modem times. The main Argentine crops are wheat, corn, sorghum, barmy, soybeans and sunflower, while Mollisols in Uruguay remain mostly dedicated to cattle and sheep grazing though crop production has been increasing very rapidly in the last decade. Throughout South America, research has shown that Mollisols are experiencing losses of soil organic matter and nutrients, and degradation of physical properties after long cropping periods, resulting in soil scientists calling for increased conservation practices to reduce future losses and a deterioration of soil quality, and thus a more sustainable agriculture in the region.展开更多
文摘The mineral components and microstructure of soft rock sampled from roadway floor in Xiagou pit are determined by X ray diffraction and scanning electron microscope. Combined with the test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.
基金Under the auspices of Bureau of International Cooperation Grant,Chinese Academy of Sciences(No.GJHZ0949)Harbin Bureau of Science and Technology for Outstanding Scientist(No.2010RFXYN044)+3 种基金National University of Mar del Plata(No.AGR-336/10)National Institute of Agricultural Technology(No.AERN-022411)National Agency for the Promotion of Science and Technology(No.PAE-PICT2007n°18)Department of Renewable Natural Resourses,Ministry of Livestock,Agriculture and Fisheries of Uruguay(No.TCP/URU/3301)
文摘Mollisols are common in South America. They cover about 8.87 × 107ha, 1.3 × 107ha and 4.3 × 106ha in Argentina, Uruguay and Southern Brazil respectively, which is 11.5% of the world total. Most of South American Mollisols were developed on Pleistocene and Holocene sediments and lie within the limits of the temperate zone, though the extreme north is bordering subtropical and the extreme south is within a cold-temperate zone. All suborders of Mollisols occur in Argentina, the most extensive being Udolls followed by Ustolls, whereas only Udolls, Aquolls and Albolls occur in Uruguay. Vertisols in Uruguay have many properties similar to Mollisols, and the occurrence of Vertisols is strongly associated with Mollisols. The Pampean Mollisols are a significant component of the global breadbasket of modem times. The main Argentine crops are wheat, corn, sorghum, barmy, soybeans and sunflower, while Mollisols in Uruguay remain mostly dedicated to cattle and sheep grazing though crop production has been increasing very rapidly in the last decade. Throughout South America, research has shown that Mollisols are experiencing losses of soil organic matter and nutrients, and degradation of physical properties after long cropping periods, resulting in soil scientists calling for increased conservation practices to reduce future losses and a deterioration of soil quality, and thus a more sustainable agriculture in the region.