Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magm...Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.展开更多
Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tect...Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tectonic activity, and tectonic evolution ofthe area of the Xiamen submarine tunnel, the strike NWW 295^(。), which is the main unfavorable geological structure that affects the safety of the tunnel construction; the macrogeological prediction concludes that weathered troughs and groundwater-rich zonesformed by its larger-scale fault fracture zones are the main unfavorable geological bodiesprovides a basis for preventing the geo-logical hazards in the tunnel construction.展开更多
In this paper,we used tectonic dynamics theories to study the tectonic evolution characteristics of the Pingdingshan mine area,and analyzed the impact of tectonic progressive control on gas occurrence.The study result...In this paper,we used tectonic dynamics theories to study the tectonic evolution characteristics of the Pingdingshan mine area,and analyzed the impact of tectonic progressive control on gas occurrence.The study results are as follows:the Pingdingshan mine area has been mainly controlled by multiple squeezing and shearing actions of the Qinling orogenic belt since early and middle Yanshan,forming the tectonic control characteristics of master control in two directions,namely NWW trending and NNE trending;the NWW trending structure is dominated by squeezing and shearing,while the NNE trending structure is dominated by tension.Progressively controlled by the structure,the gas occurrence presents partition and zonation,i.e.compared with the western structure,the eastern NWW-NW trending structure of the mine area is more highly developed,resulting in the mine area gas occurrence distribution characteristics are distinct in the east while indistinct in the west.Based on this,the mine area can be divided into the following two geological dynamic areas:the western half of mine area,namely the Guodishan fault control area,where the NW-SE trending synchronous tension action suffered by the northeast side(footwall) is relatively strong,and compared with the southwest side(hanging wall),its coal and gas outburst seriousness is weak;and the eastern half of mine area,namely the NWW-NW thrust nappe fracture fold control area,which is a serious area of coal and gas outburst,in particular the axial area of the Likou syncline is the intersection compound and combination position of the NW and NE trending structures,a tectonic concentrated area,and the gas pressure and content here are the largest.展开更多
基金Project(20091100704)supported by the Special Funds for Scientific Research of Land and Natural Resources,ChinaProject(2015CX008)supported by the Innovation Driven Plan of Central South University,China
文摘Dongguashan deposit is a large porphyry-skarn copper(gold) deposit in Tongling ore district. The Qingshanjiao intermediate acid intrusion of Yanshanian had a direct genetic relationship with mineralization. The magma origin, rock-forming dynamic background and rock-forming process were studied, and the rock-forming mechanism of Qingshanjiao intrusion was discussed, based on geological characteristics, detailed observation of petrography and systematic investigation of petrochemistry, trace elements and REE geochemistry characteristics of Qingshanjiao intrusion. The results show that Qingshanjiao rock body belongs to high-K calc-alkaline series with higher LREE elements, Th, Rb and Sr abundance, but depleted in HREE elements, Ba, Nb and Ta. The primary magma originated from the mantle-crust mixtures which were caused by basaltic magma of mantle mixing with syenite magma of partial melting of the lower crust, and the formation environment of Qingshanjiao intrusion was emplaced in the transitional environment from compression to extension. The Harker diagram and hybrid structures of plagioclase and potassium feldspar indicate that the fractional crystallization occurred in the process of magmatic evolution. The petrochemistry, trace elements and REE geochemistry characteristics indicate that the magma was contaminated by crustal material during the rock-forming. These results suggested that the Qingshanjiao intrusion was formed by fractional crystallization and assimilation and hybridization of mantle-crust magma in the transitional environment from compression to extensional.
基金Supported by the National Natural Science Foundation of China(10702072)the Education Department of Hebei Province (Z2006428)Doctoral Foundation of Hebei Normal University of Science & Technology
文摘Based on the theory of geomechanics and using geologic analytical methods,analyed the fault characteristics, mechanical properties, displacement mode, tectonic system, structural pattern, activity mode of stress, tectonic activity, and tectonic evolution ofthe area of the Xiamen submarine tunnel, the strike NWW 295^(。), which is the main unfavorable geological structure that affects the safety of the tunnel construction; the macrogeological prediction concludes that weathered troughs and groundwater-rich zonesformed by its larger-scale fault fracture zones are the main unfavorable geological bodiesprovides a basis for preventing the geo-logical hazards in the tunnel construction.
基金funded by Twelfth Five Year Plan Special Science and Technology of China(No.2011ZX05040-005)open fund of State Key Laboratory Cultivation Base for Gas Geology and Gas Control of China(No.WS2013A11)+1 种基金the Fundamental Research Funds for the Universities of Henan Province of China(No. NSFRF140104)the Open Project of the State Key Laboratory of Coal Resources and Safe Mining of China(No.SKLCRSM14KFB11)
文摘In this paper,we used tectonic dynamics theories to study the tectonic evolution characteristics of the Pingdingshan mine area,and analyzed the impact of tectonic progressive control on gas occurrence.The study results are as follows:the Pingdingshan mine area has been mainly controlled by multiple squeezing and shearing actions of the Qinling orogenic belt since early and middle Yanshan,forming the tectonic control characteristics of master control in two directions,namely NWW trending and NNE trending;the NWW trending structure is dominated by squeezing and shearing,while the NNE trending structure is dominated by tension.Progressively controlled by the structure,the gas occurrence presents partition and zonation,i.e.compared with the western structure,the eastern NWW-NW trending structure of the mine area is more highly developed,resulting in the mine area gas occurrence distribution characteristics are distinct in the east while indistinct in the west.Based on this,the mine area can be divided into the following two geological dynamic areas:the western half of mine area,namely the Guodishan fault control area,where the NW-SE trending synchronous tension action suffered by the northeast side(footwall) is relatively strong,and compared with the southwest side(hanging wall),its coal and gas outburst seriousness is weak;and the eastern half of mine area,namely the NWW-NW thrust nappe fracture fold control area,which is a serious area of coal and gas outburst,in particular the axial area of the Likou syncline is the intersection compound and combination position of the NW and NE trending structures,a tectonic concentrated area,and the gas pressure and content here are the largest.