Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characte...Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characters of the coals have not been done so far. This investigation is an attempt for petrographic and geochemical appraisal of the coals. Moreover, effort is also made for possible interpretation on development of coal facies. The results drawn from 30 composite coal samples suggest coals are rich in vitrinite, with collotelinite as the dominant maceral while liptinite macerals register low concentration. Dominant mineral assemblages found were clay minerals, pyrite was recorded as disseminated, framboidal and euhedral forms, carbonates recorded were mainly siderites. The vitrinite reflectance random (VRo) mean values range from 0.44 % to 0.56 %, and the rank of coal is suggested as high volatile 'B' to 'A' sub- bituminous in rank. The rock-eval pyrolysis reveal TOC content varying from 37 % to 68.83 %, while low hydrocarbon generating potential is evident from low $2 and Tmax values. The Hydrogen Index (HI) versus Oxygen Index (OI) plot reveal that the samples belong to Kerogen type--II-III with input dominantly from terrestrial source, some samples also fall in Kerogen type--II domain indicating lacustrine input. Vitrinite reflectance result indicate that the samples are immature and approaching oil window, which is in agreement with data of the Rock-Eval parameters. The gelification index (GI) and tissue preservation index (TPI) indicate that the coal developed in a telematic set up with high tree density. The ground water index (GWI) and vegetation index (VI) demonstrate that the peat developed as an ombrogenous bog.展开更多
We describe the earlier unknown, when applied to global tectonics, centrifugal inertial mechanism of lithosphere plate moving under the effect of forces appearing as a result of Earth’s planetary rotation. The mechan...We describe the earlier unknown, when applied to global tectonics, centrifugal inertial mechanism of lithosphere plate moving under the effect of forces appearing as a result of Earth’s planetary rotation. The mechanism stated gives an insight into global tectonics of plates with the indirect participation of emanation streams which, in their turn, are the derivatives of centrifugal and inertial forces of planetary motion. The application of this mechanism provides a logical explanation for the regularities of global tectogenesis including the formation of mountain ridges mainly of submeridional and sublatitudinal strike, and also the drift of continental plates from the east to the west and from the south to the north. The mechanism clarifies the significance of the Arctic and the Antarctic Circles as geodynamic barriers.展开更多
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40...We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40' N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.展开更多
Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface bet...Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface between soil layers with different saturations are obtained.Our unsaturated model consists of a deformable skeleton in which two compressible and viscous fluids(i.e.,water and gas)flow in the interstices.Three compressional waves(i.e.,P1,P2,and P3 waves)and one shear(i.e.,S wave)wave exist in the unsaturated soils.The expressions for the energy ratios of the various reflected and transmitted waves at the interface during the transmission and reflection processes are presented in explicit forms accordingly.At last,numerical computations are performed and the results obtained are respectively depicted graphically.The variation of the energy ratios with the incident angle,wave frequency and saturation degrees of the upper and lower soil layers is illustrated in detail.The calculation results show that the allocation of incident seismic waves at the interface is influenced not only by the angle and frequency of the incident seismic waves,but also by the saturations of the upper and lower soil layers.It is also verified that,at the interface,the sum of energy ratios of the reflected and transmitted waves is approximately equal to unity as was expected.This study is of importance to several fields such as geotechnical engineering,seismology,and geophysics.展开更多
Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P...Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P-wave seismic scattering coefficient equation in terms of fluid factor,shear modulus and density of background homogeneous media and perturbation media.With this equation as forward solver,a pre-stack seismic Bayesian inversion method is proposed to estimate the fluid factor of heterogeneous media.In this method,Cauchy distribution is utilized to the ratios of fluid factors,shear moduli and densities of perturbation media and background homogeneous media,respectively.Gaussian distribution is utilized to the likelihood function.The introduction of constraints from initial smooth models enhances the stability of the estimation of model parameters.Model test and real data example demonstrate that the proposed method is able to estimate the fluid factor of heterogeneous media from pre-stack seismic data directly and reasonably.展开更多
文摘Mand-Raigarh coalfield is one of the largest coalfields in the Mahanadi basin. The Geological Survey of India carried out initial study primarily on exploration. However, detailed petrographic and geochemical characters of the coals have not been done so far. This investigation is an attempt for petrographic and geochemical appraisal of the coals. Moreover, effort is also made for possible interpretation on development of coal facies. The results drawn from 30 composite coal samples suggest coals are rich in vitrinite, with collotelinite as the dominant maceral while liptinite macerals register low concentration. Dominant mineral assemblages found were clay minerals, pyrite was recorded as disseminated, framboidal and euhedral forms, carbonates recorded were mainly siderites. The vitrinite reflectance random (VRo) mean values range from 0.44 % to 0.56 %, and the rank of coal is suggested as high volatile 'B' to 'A' sub- bituminous in rank. The rock-eval pyrolysis reveal TOC content varying from 37 % to 68.83 %, while low hydrocarbon generating potential is evident from low $2 and Tmax values. The Hydrogen Index (HI) versus Oxygen Index (OI) plot reveal that the samples belong to Kerogen type--II-III with input dominantly from terrestrial source, some samples also fall in Kerogen type--II domain indicating lacustrine input. Vitrinite reflectance result indicate that the samples are immature and approaching oil window, which is in agreement with data of the Rock-Eval parameters. The gelification index (GI) and tissue preservation index (TPI) indicate that the coal developed in a telematic set up with high tree density. The ground water index (GWI) and vegetation index (VI) demonstrate that the peat developed as an ombrogenous bog.
文摘We describe the earlier unknown, when applied to global tectonics, centrifugal inertial mechanism of lithosphere plate moving under the effect of forces appearing as a result of Earth’s planetary rotation. The mechanism stated gives an insight into global tectonics of plates with the indirect participation of emanation streams which, in their turn, are the derivatives of centrifugal and inertial forces of planetary motion. The application of this mechanism provides a logical explanation for the regularities of global tectogenesis including the formation of mountain ridges mainly of submeridional and sublatitudinal strike, and also the drift of continental plates from the east to the west and from the south to the north. The mechanism clarifies the significance of the Arctic and the Antarctic Circles as geodynamic barriers.
基金supported by the Basic Research Project of Institute of Earthquake Science,CEA (2012IES010103)the National Natural Science Foundation of China (41204037)
文摘We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40' N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.
基金supported by the National Natural Science Foundation of China(Grant No.51378258)the National Basic Research Program of China("973"Project)(Grant No.2011CB013601)
文摘Based on the multiphase poroelasticity theory describing the propagation of waves in the unsaturated fluid-saturated porous medium,the reflection and transmission coefficients of the seismic waves at the interface between soil layers with different saturations are obtained.Our unsaturated model consists of a deformable skeleton in which two compressible and viscous fluids(i.e.,water and gas)flow in the interstices.Three compressional waves(i.e.,P1,P2,and P3 waves)and one shear(i.e.,S wave)wave exist in the unsaturated soils.The expressions for the energy ratios of the various reflected and transmitted waves at the interface during the transmission and reflection processes are presented in explicit forms accordingly.At last,numerical computations are performed and the results obtained are respectively depicted graphically.The variation of the energy ratios with the incident angle,wave frequency and saturation degrees of the upper and lower soil layers is illustrated in detail.The calculation results show that the allocation of incident seismic waves at the interface is influenced not only by the angle and frequency of the incident seismic waves,but also by the saturations of the upper and lower soil layers.It is also verified that,at the interface,the sum of energy ratios of the reflected and transmitted waves is approximately equal to unity as was expected.This study is of importance to several fields such as geotechnical engineering,seismology,and geophysics.
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003&2011ZX05006-002)
文摘Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P-wave seismic scattering coefficient equation in terms of fluid factor,shear modulus and density of background homogeneous media and perturbation media.With this equation as forward solver,a pre-stack seismic Bayesian inversion method is proposed to estimate the fluid factor of heterogeneous media.In this method,Cauchy distribution is utilized to the ratios of fluid factors,shear moduli and densities of perturbation media and background homogeneous media,respectively.Gaussian distribution is utilized to the likelihood function.The introduction of constraints from initial smooth models enhances the stability of the estimation of model parameters.Model test and real data example demonstrate that the proposed method is able to estimate the fluid factor of heterogeneous media from pre-stack seismic data directly and reasonably.