A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encoun...A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.展开更多
This paper presents the geologic and ground control challenges that were encountered by Consol Energy's coal mining operations in southwestem Pennsylvania, USA. Geologic encounters, such as sandstone- to-limestone ge...This paper presents the geologic and ground control challenges that were encountered by Consol Energy's coal mining operations in southwestem Pennsylvania, USA. Geologic encounters, such as sandstone- to-limestone geology transition, massive sandstone channels, shale channels, pyritic rich green claystone, laminated roof, and soft floor, have significantly impacted the development and longwall mining in Consol's Pittsburgh Seam coal mines. Experience from different mines shows that, in the sandstone-to-limestone geology transition zone, 1.83 m high-tension, fully-grouted primary bolts employed along with 4.88 m cen- ter cable bolts at every other strap greatly improved beam building and ensured proper anchorage into the competent roof. Hydraulic fracturing of the massive sandstone was often necessary to enhance caving of the massive sandstone behind the shields to relieve pressure at the face. The presence of soft floor coupled with presence of thick floor coal and deep cover, induced excessive headgate convergence during retreat of the first right hand longwall panel. In all, it is important to explore the roof and in-seam geology in detail to delineate normal and anomalous geologic conditions prior to and during development. With diligent geologic reconnaissance, geotechnical monitoring, and assessment, site-specific geotechnical solutions have been provided to mine operations to improve safety and productivity.展开更多
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
文摘A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.
文摘This paper presents the geologic and ground control challenges that were encountered by Consol Energy's coal mining operations in southwestem Pennsylvania, USA. Geologic encounters, such as sandstone- to-limestone geology transition, massive sandstone channels, shale channels, pyritic rich green claystone, laminated roof, and soft floor, have significantly impacted the development and longwall mining in Consol's Pittsburgh Seam coal mines. Experience from different mines shows that, in the sandstone-to-limestone geology transition zone, 1.83 m high-tension, fully-grouted primary bolts employed along with 4.88 m cen- ter cable bolts at every other strap greatly improved beam building and ensured proper anchorage into the competent roof. Hydraulic fracturing of the massive sandstone was often necessary to enhance caving of the massive sandstone behind the shields to relieve pressure at the face. The presence of soft floor coupled with presence of thick floor coal and deep cover, induced excessive headgate convergence during retreat of the first right hand longwall panel. In all, it is important to explore the roof and in-seam geology in detail to delineate normal and anomalous geologic conditions prior to and during development. With diligent geologic reconnaissance, geotechnical monitoring, and assessment, site-specific geotechnical solutions have been provided to mine operations to improve safety and productivity.