The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate est...The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.展开更多
Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an impo...Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.展开更多
基金supported by National Science and Technology Support Project (Grant No. 2012BAD05B03–6)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05070403)National Natural Science Foundationof China (Grant No. 41171246)
文摘The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.
基金National Natural Science Foundation of China,No.41571077,No.41171318The Fundamental Research Funds for the Central Universities
文摘Geological disasters not only cause economic losses and ecological destruction, but also seriously threaten human survival. Selecting an appropriate method to evaluate susceptibility to geological disasters is an important part of geological disaster research. The aims of this study are to explore the accuracy and reliability of multi-regression methods for geological disaster susceptibility evaluation, including Logistic Regression(LR), Spatial Autoregression(SAR), Geographical Weighted Regression(GWR), and Support Vector Regression(SVR), all of which have been widely discussed in the literature. In this study, we selected Yunnan Province of China as the research site and collected data on typical geological disaster events and the associated hazards that occurred within the study area to construct a corresponding index system for geological disaster assessment. Four methods were used to model and evaluate geological disaster susceptibility. The predictive capabilities of the methods were verified using the receiver operating characteristic(ROC) curve and the success rate curve. Lastly, spatial accuracy validation was introduced to improve the results of the evaluation, which was demonstrated by the spatial receiver operating characteristic(SROC) curve and the spatial success rate(SSR) curve. The results suggest that: 1) these methods are all valid with respect to the SROC and SSR curves, and the spatial accuracy validation method improved their modelling results and accuracy, such that the area under the curve(AUC) values of the ROC curves increased by about 3%–13% and the AUC of the success rate curve values increased by 15%–20%; 2) the evaluation accuracies of LR, SAR, GWR, and SVR were 0.8325, 0.8393, 0.8370 and 0.8539, which proved the four statistical regression methods all have good evaluation capability for geological disaster susceptibility evaluation and the evaluation results of SVR are more reasonable than others; 3) according to the evaluation results of SVR, the central-southern Yunnan Province are the highest sus-ceptibility areas and the lowest susceptibility is mainly located in the central and northern parts of the study area.