期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
空间异质性建成环境对地铁与公交换乘客流的影响 被引量:3
1
作者 李想 晏启鹏 骆晨 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第2期100-110,共11页
地铁与常规公交换乘的出行方式成为人口密集型城市的主要出行方式,探究两者换乘模式的影响因素有助于提高公共交通分担率。本文采用AFC(Automatic Fare Collection System)数据与AVL(Automatic Vehicle Location)数据,识别地铁-公交(M-B... 地铁与常规公交换乘的出行方式成为人口密集型城市的主要出行方式,探究两者换乘模式的影响因素有助于提高公共交通分担率。本文采用AFC(Automatic Fare Collection System)数据与AVL(Automatic Vehicle Location)数据,识别地铁-公交(M-B)和公交-地铁(B-M)两种模式的换乘客流。以地铁站点为核心,围绕站点周边开发程度、交通系统、城市设计及地铁网络结构特征这4个维度构建地铁站点建成环境指标体系。利用多尺度地理加权回归模型(MGWR)探究城市建成环境对地铁-公交与公交-地铁两种换乘模式的影响机理及其尺度效应,并以成都市为对象进行实证研究。研究结果表明:MGWR模型能够反映不同建成环境要素与M-B和B-M方式间依赖关系的空间异质性与作用尺度差异性,估计结果优于全局OLS(Ordinary Least-Squares)模型与GWR(Geographic Weighted Regression)模型;建成环境要素对公交与地铁换乘客流的影响效应存在空间异质性,公交线路数量空间异质性最为显著,非机动车道密度、土地利用混合度及地铁线路数量空间异质性较弱;不同建成环境要素对换乘客流的影响效果具有差异性,公交站点数量与线路数量影响程度对换乘客流促进作用较大,而非机动车道密度则有明显的抑制作用。 展开更多
关键词 城市交通 空间异质性 多尺度地理加权回归模型 地铁-公交换乘 建成环境
下载PDF
Probabilistic interval prediction of metro-to-bus transfer passenger flow in the trip chain 被引量:2
2
作者 Shen Jin Zhao Jiandong +2 位作者 Gao Yuan Feng Yingzi Jia Bin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期408-417,共10页
To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger f... To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger flows.First,bus and metro data are processed and matched by association to construct the basis for public transport trip chain extraction.Second,a reasonable matching threshold method to discriminate the transfer relationship is used to extract the public transport trip chain,and the basic characteristics of the trip based on the trip chain are analyzed to obtain the metro-to-bus transfer passenger flow.Third,to address the problem of low accuracy of point prediction,the DeepAR model is proposed to conduct interval prediction,where the input is the interchange passenger flow,the output is the predicted median and interval of passenger flow,and the prediction scenarios are weekday,non-workday,and weekday morning and evening peaks.Fourth,to reduce the prediction error,a combined particle swarm optimization(PSO)-DeepAR model is constructed using the PSO to optimize the DeepAR model.Finally,data from the Beijing Xizhimen subway station are used for validation,and results show that the PSO-DeepAR model has high prediction accuracy,with a 90%confidence interval coverage of up to 93.6%. 展开更多
关键词 urban traffic probabilistic interval prediction deep learning metro-to-bus transfer passenger flow trip chain
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部