To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0...To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.展开更多
Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still un...Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still under-developed. Based on the geology and logging analysis, we redefine low-resistivity oil zones. According to their genesis, low-resis- tivity oil zones can be distinguished as five different classes: low-resistivity oil zones formed by tectonic settings, by depositional settings, by diagenetic settings, by invaded settings and those which are formed by the compounding geneses respectively. We make the following observations from this study on the definition and classification of low-resistivity oil zones: 1) A low-resistivity oil reservoir has macroscopic and microscopic unity. 2) The genesis of low-resistivity oil zones varies with the type of petroliferous basin. 3) Some low-resistivity oil zones can be forecasted based on the geological study results. 4) The results in this paper suggest that well logging information is generated from two cause mechanisms, the geophysical factors and the geological setting. Future studies on the geological background cause mechanism and the theory of well logging information will enrich the theory of logging geology and improve the ability to forecast oil zones.展开更多
Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in th...Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.展开更多
Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of...Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.展开更多
Shibaozhai area is located in the northeast Sichuan Basin in Southwest China.In recent years,oil and gas reservoirs with abundant reserves have been discovered in nearby areas.Six magnetotelluric(MT)survey lines were ...Shibaozhai area is located in the northeast Sichuan Basin in Southwest China.In recent years,oil and gas reservoirs with abundant reserves have been discovered in nearby areas.Six magnetotelluric(MT)survey lines were arranged to investigate the deep geoelectrical structures and hidden faults that controlled the hydrocarbon migration along the eastern Kaijiang–Liangping trough and Dachiganjing tectonic belt in this area.The MT sounding data for 181 sites,which covered an area of 15×6 km,were collected.Twodimensional transverse-magnetic-mode inversion of the data revealed four geoelectric layers with a total thickness of approximately 10 km.A low resistivity layer with a thickness of 4 km was discovered in the middle of the exploration area.The combination of faults within the study area revealed a northeast-direction thrust-fault system,which was displaced by northwest-direction faults.The regional geological structures played a significant role in controlling hydrocarbon and gas accumulation.The results of this study could be beneficial in analyzing the geological structure of hydrocarbon reservoirs in this area and can be extended to the exploration of areas in the boundary of a basin.展开更多
Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally ...Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally friendly UCG system construction. One of the most important UCG's problems is underground control of combustion area for efficient gas production, estimation of subsidence and gas leakage to the surface. For this objective, laboratory experiments were conducted according to the UCG model to iden- ti[y the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area. While burning coal specimens, that had been sampled from various coal deposits, electrical resistivity was monitored. Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used for laboratory resistivity measurement of rock samples. Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature. Combusting coal electro conductivity has compli- cated multistage type of change. Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.展开更多
The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and G...The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.展开更多
Based on the new finding of Wenchang L low-resistivity light oil field, the finding process, reservoir charac- teristics and pool-forming pattern were studied. The oil-rock correlation, neritic reservoir type, hydroca...Based on the new finding of Wenchang L low-resistivity light oil field, the finding process, reservoir charac- teristics and pool-forming pattern were studied. The oil-rock correlation, neritic reservoir type, hydrocarbon conduct system and dominant migration and accumulation direction, and new techniques were discussed. The results showed that large amount of hydrocarbon generated by shallow lacustrine mudstone and shale of Eocene Wenchang formation could migrate from sag to Qionghai uplift distantly; neritic shoal-bar reservoir have developed in the 1 st member of Zhujiang formation, dip-sag faults and regional good marine sandstone layers of the 1 st and the 2nd member of Zhujiang formation have constituted hydrocarbon conduct system in Qionghai uplift ; the late fault system which were controlled by Dongsha tectonic movement constructed the connection between lower hydrocarbon and upper neritic shoal-bar reservoir. There- fore, the pool-forming pattern with "vertical migration and accumulation, secondary strncture-lithology-dominated" was proposed. Finally the enlightenment of exploratin~ new findings was discussed.展开更多
Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the re...Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the resistivity of subsurface materials. Electrical imaging is an appropriate survey technique for areas with complex geology where the use of resistivity sounding and other techniques are unsuitable to provide detailed subsurface information. The purpose of electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. The field survey was conducted along four profiles which provide a continuous coverage of the resistivity imaging below surface. The surface soil material is mainly clayey silt. The results showed that the layers associated with the low resistivities (Ωm) are located at depth ranging from 2 m to 28 m. This low resistivity values are associated with zone of water saturated weathered layer and fractures. The results showed that the thickness of residual soil is about 0.5-2.55 m. Borehole data indicated that the depth of bedrock is about 10 m and the groundwater level is ranging from 8.73 m to 8.54 m.展开更多
This paper studies electrical resistivity dataset acquired for a groundwater study in the Domail Plain in the northwestern Himalayan section of Pakistan. Through a combination of geostatistical analysis,geophysical in...This paper studies electrical resistivity dataset acquired for a groundwater study in the Domail Plain in the northwestern Himalayan section of Pakistan. Through a combination of geostatistical analysis,geophysical inversion and visualization techniques,it is possible to re-model and visualize the single dimension resistivity data into 2D and 3D space.The variogram models are utilized to extend the interpretation of the data and to distinguish individual lithologic units and the occurrence of saline water within the subsurface. The resistivity data has been calibrated with the lithological logs taken from the available boreholes. As such the alluvial system of the Domail Plain has formed during episodes of local tectonic activity with fluvial erosion and depositionyielding coarse sediments with high electrical resistivities near to the mountain ranges and finer sediments with medium to low electrical resistivities which tend to settle in the basin center. Thus a change is depositional setting happened from basin lacustrine environment to flash flooding during the Himalayan orogeny. The occurrence of rock salt in the northern mountains has imparted a great influence on the groundwater quality of the study area. The salt is dissolved by water which infiltrates into the subsurface through the water channels. Variogram aided gridding of resistivity data helps to identify the occurrence and distribution of saline water in the subsurface.展开更多
The magnetotelluric sounding method was used to study the active fault in Shenzhen city.Four magnetotelluric profiles with a dense station interval were laid out across the Shenzhen fault zone.The remote reference tec...The magnetotelluric sounding method was used to study the active fault in Shenzhen city.Four magnetotelluric profiles with a dense station interval were laid out across the Shenzhen fault zone.The remote reference technique was used in both data observation and processing to eliminate the electromagnetic noise near the survey sites,and relatively smooth apparent resistivity curves were obtained.TM mode data and two-dimensional inversion method as NLCG were used to obtain the electrical structures underground.According to the surficial geology survey results on regional strata and distribution of magmatic bodies and faults,the electrical structures at depths less than 2000m of each profile were interpreted.Two regional faults,the Henggang-Luohu fault and the Liantang fault,and seven local faults consistent with the electrical boundaries were verified or discovered.The strata in the survey area were then related with the change of resistivity.Electrical horizontal slices of depths less than 5000m indicate that the Henggang-Luohu fault and the Liantang fault bifurcate at the shallow part but tend to merge in the deep part.展开更多
Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method o...Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method of earthquake (EQ) prediction. The AR changes of the first type (CFT) are considered to be precursors related to earthquakes (EQs); these appear mostly in the medium-term period before EQs and in the short-term period preceding EQs. The changes of the second type (CST) are characterized by a turning anomaly of a long-trend AR variation or the drastically descending/ascending anomaly superimposed on such a variation; these appear synchronously in large areas, such as the Chinese mainland, and northern and northwestern China, ect. Their spatio-temporal clusters correspond well to high seismicities in the areas and distant great EQs around the Chinese mainland. Based on the behaviors of the two types of changes, the AR changes observed prior to the Ms8.0 Wenchuan EQ of 2008 are studied. The results show that in the medium-term period before the EQ, noticeable anomalies appeared synchronously at four stations around the Songpan-Ganzi active block, but only weak upward changes were observed in the short-term period preceding the EQ, which caused the prediction of the imminent EQ to fail.展开更多
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX3-SW-418)the 100 Talents Program of the Chinese Academy of Sciences,China.
文摘To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.
文摘Although the analysis of the microcosmic mechanism for low-resistivity oil zones has received much attention in China, the intrinsic relationship between low-resistivity oil zones and geological background is still under-developed. Based on the geology and logging analysis, we redefine low-resistivity oil zones. According to their genesis, low-resis- tivity oil zones can be distinguished as five different classes: low-resistivity oil zones formed by tectonic settings, by depositional settings, by diagenetic settings, by invaded settings and those which are formed by the compounding geneses respectively. We make the following observations from this study on the definition and classification of low-resistivity oil zones: 1) A low-resistivity oil reservoir has macroscopic and microscopic unity. 2) The genesis of low-resistivity oil zones varies with the type of petroliferous basin. 3) Some low-resistivity oil zones can be forecasted based on the geological study results. 4) The results in this paper suggest that well logging information is generated from two cause mechanisms, the geophysical factors and the geological setting. Future studies on the geological background cause mechanism and the theory of well logging information will enrich the theory of logging geology and improve the ability to forecast oil zones.
基金financially supported by the National Basic Research program(973 program)of China(Grant No.2013CB733201)the Key Program of the Chinese Academy of Sciences(KZZD-EW-05-01)the“Hundred Talents”program of Chinese Academy of Sciences for supporting the research
文摘Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.
基金supported by Natural Science Fondation of Shandong Province(ZR2010DM008)National Natural Science Foundation(40534023, 41074047),China
文摘Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.
基金supported by the National Natural Science Foundation of China(42074085,and 41574067).
文摘Shibaozhai area is located in the northeast Sichuan Basin in Southwest China.In recent years,oil and gas reservoirs with abundant reserves have been discovered in nearby areas.Six magnetotelluric(MT)survey lines were arranged to investigate the deep geoelectrical structures and hidden faults that controlled the hydrocarbon migration along the eastern Kaijiang–Liangping trough and Dachiganjing tectonic belt in this area.The MT sounding data for 181 sites,which covered an area of 15×6 km,were collected.Twodimensional transverse-magnetic-mode inversion of the data revealed four geoelectric layers with a total thickness of approximately 10 km.A low resistivity layer with a thickness of 4 km was discovered in the middle of the exploration area.The combination of faults within the study area revealed a northeast-direction thrust-fault system,which was displaced by northwest-direction faults.The regional geological structures played a significant role in controlling hydrocarbon and gas accumulation.The results of this study could be beneficial in analyzing the geological structure of hydrocarbon reservoirs in this area and can be extended to the exploration of areas in the boundary of a basin.
基金provided by the Ministry of EducationScience of Russian Federation (No. P1679),Far Eastern Federal University
文摘Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen, methane, etc.) in an underground coal seam. It is necessary to further developing environ- mentally friendly UCG system construction. One of the most important UCG's problems is underground control of combustion area for efficient gas production, estimation of subsidence and gas leakage to the surface. For this objective, laboratory experiments were conducted according to the UCG model to iden- ti[y the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area. While burning coal specimens, that had been sampled from various coal deposits, electrical resistivity was monitored. Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used for laboratory resistivity measurement of rock samples. Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature. Combusting coal electro conductivity has compli- cated multistage type of change. Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.
文摘The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes.
文摘Based on the new finding of Wenchang L low-resistivity light oil field, the finding process, reservoir charac- teristics and pool-forming pattern were studied. The oil-rock correlation, neritic reservoir type, hydrocarbon conduct system and dominant migration and accumulation direction, and new techniques were discussed. The results showed that large amount of hydrocarbon generated by shallow lacustrine mudstone and shale of Eocene Wenchang formation could migrate from sag to Qionghai uplift distantly; neritic shoal-bar reservoir have developed in the 1 st member of Zhujiang formation, dip-sag faults and regional good marine sandstone layers of the 1 st and the 2nd member of Zhujiang formation have constituted hydrocarbon conduct system in Qionghai uplift ; the late fault system which were controlled by Dongsha tectonic movement constructed the connection between lower hydrocarbon and upper neritic shoal-bar reservoir. There- fore, the pool-forming pattern with "vertical migration and accumulation, secondary strncture-lithology-dominated" was proposed. Finally the enlightenment of exploratin~ new findings was discussed.
文摘Electrical resistivity imaging surveys have been conducted in order to locate, delineate subsurface water resource and estimate its reserve. The resistivity imaging surveys carried out basically measure and map the resistivity of subsurface materials. Electrical imaging is an appropriate survey technique for areas with complex geology where the use of resistivity sounding and other techniques are unsuitable to provide detailed subsurface information. The purpose of electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. The resistivity imaging measurement employing Wenner electrode configuration was carried out using an ABEM SAS 1000 terrameter and electrode selector system ES464. The field survey was conducted along four profiles which provide a continuous coverage of the resistivity imaging below surface. The surface soil material is mainly clayey silt. The results showed that the layers associated with the low resistivities (Ωm) are located at depth ranging from 2 m to 28 m. This low resistivity values are associated with zone of water saturated weathered layer and fractures. The results showed that the thickness of residual soil is about 0.5-2.55 m. Borehole data indicated that the depth of bedrock is about 10 m and the groundwater level is ranging from 8.73 m to 8.54 m.
基金Water and Power Development Authority(WAPDA)is hereby acknowledged for their support in th e present study.
文摘This paper studies electrical resistivity dataset acquired for a groundwater study in the Domail Plain in the northwestern Himalayan section of Pakistan. Through a combination of geostatistical analysis,geophysical inversion and visualization techniques,it is possible to re-model and visualize the single dimension resistivity data into 2D and 3D space.The variogram models are utilized to extend the interpretation of the data and to distinguish individual lithologic units and the occurrence of saline water within the subsurface. The resistivity data has been calibrated with the lithological logs taken from the available boreholes. As such the alluvial system of the Domail Plain has formed during episodes of local tectonic activity with fluvial erosion and depositionyielding coarse sediments with high electrical resistivities near to the mountain ranges and finer sediments with medium to low electrical resistivities which tend to settle in the basin center. Thus a change is depositional setting happened from basin lacustrine environment to flash flooding during the Himalayan orogeny. The occurrence of rock salt in the northern mountains has imparted a great influence on the groundwater quality of the study area. The salt is dissolved by water which infiltrates into the subsurface through the water channels. Variogram aided gridding of resistivity data helps to identify the occurrence and distribution of saline water in the subsurface.
基金sponsored by the "Program for Active Fault Detection and Earthquake Risk Assessment in Shenzhen City",China
文摘The magnetotelluric sounding method was used to study the active fault in Shenzhen city.Four magnetotelluric profiles with a dense station interval were laid out across the Shenzhen fault zone.The remote reference technique was used in both data observation and processing to eliminate the electromagnetic noise near the survey sites,and relatively smooth apparent resistivity curves were obtained.TM mode data and two-dimensional inversion method as NLCG were used to obtain the electrical structures underground.According to the surficial geology survey results on regional strata and distribution of magmatic bodies and faults,the electrical structures at depths less than 2000m of each profile were interpreted.Two regional faults,the Henggang-Luohu fault and the Liantang fault,and seven local faults consistent with the electrical boundaries were verified or discovered.The strata in the survey area were then related with the change of resistivity.Electrical horizontal slices of depths less than 5000m indicate that the Henggang-Luohu fault and the Liantang fault bifurcate at the shallow part but tend to merge in the deep part.
基金supported by National Key Technology Research and Development Program of China (Grant Nos. 2008BAC35B01-8 and 2006BAC01B02-04-03)
文摘Two types of changes in apparent resistivity (AR) have been linked to earthquake occurrences. This paper studies the changes and their causes, in detail with the ultimate purpose of developing and assessing a method of earthquake (EQ) prediction. The AR changes of the first type (CFT) are considered to be precursors related to earthquakes (EQs); these appear mostly in the medium-term period before EQs and in the short-term period preceding EQs. The changes of the second type (CST) are characterized by a turning anomaly of a long-trend AR variation or the drastically descending/ascending anomaly superimposed on such a variation; these appear synchronously in large areas, such as the Chinese mainland, and northern and northwestern China, ect. Their spatio-temporal clusters correspond well to high seismicities in the areas and distant great EQs around the Chinese mainland. Based on the behaviors of the two types of changes, the AR changes observed prior to the Ms8.0 Wenchuan EQ of 2008 are studied. The results show that in the medium-term period before the EQ, noticeable anomalies appeared synchronously at four stations around the Songpan-Ganzi active block, but only weak upward changes were observed in the short-term period preceding the EQ, which caused the prediction of the imminent EQ to fail.