The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods s...The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.展开更多
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th...At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
The 5.12 Wenchuan Earthquake in 2008 induced hundreds of large-scale landslides. This paper systematically analyzes 112 large-scale landslides (surface area > 50000 m2), which were identified by interpretation of r...The 5.12 Wenchuan Earthquake in 2008 induced hundreds of large-scale landslides. This paper systematically analyzes 112 large-scale landslides (surface area > 50000 m2), which were identified by interpretation of remote sensing imagery and field investigations. The analysis suggests that the distribution of large-scale landslides is affected by the following four factors: (a) distance effect: 80% of studied large-scale landslides are located within a distance of 5 km from the seismic faults. The farther the distance to the faults, the lower the number of large-scale landslides; (b) locked segment effect: the large-scale landslides are mainly located in five concentration zones closely related with the crossing, staggering and transfer sections between one seismic fault section and the next one, as well as the end of the NE fault section. The zone with the highest concentration was the Hongbai-Chaping segment, where a great number of large-scale landslides including the two largest landslides were located. The second highest concentration of large-scale landslides was observed in the Nanba-Donghekou segment at the end of NE fault, where the Donghekou landslide and the Woqian landslide occurred; (c) Hanging wall effect: about 70% of the large-scale landslides occurred on the hanging wall of the seismic faults; and (d) direction effect: in valleys perpendicular to the seismic faults, the density of large-scale landslides on the slopes facing the seismic wave is obviously higher than that on the slopes dipping in the same direction as the direction of propagation of the seismic wave. Meanwhile, it is found that the sliding and moving directions of large-scale landslides are related to the staggering direction of the faults in each section. In Qingchuan County where the main fault activity was horizontal twisting and staggering, a considerable number of landslides showed the feature of sliding and moving in NE direction which coincides with the staggering direction of the seismic faults.展开更多
A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear mode...A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.展开更多
This study investigates the spatial and temporal variation of fractal dimension and b-value for the eastern part of the Himalaya and adjoining area(26°N–31°N and 87°E–98°E).The analysis is carrie...This study investigates the spatial and temporal variation of fractal dimension and b-value for the eastern part of the Himalaya and adjoining area(26°N–31°N and 87°E–98°E).The analysis is carried out on the earthquake dataset of 1373 events(Mc=4.0)by sliding window technique for the period 1964 to 2020.The region is divided into three sub regions A(87°E–92°E),B(92°E–94°E)and C(94°E–98°E).The b-value computed for the region A comprising eastern Nepal is smaller compared to other two regions which infers the possible high stress and asperities in the region.High spatial fractal dimension(Dc>1.5)and low temporal fractal dimension(Dt<0.31)are computed for the regions.High spatial fractal dimension may indicate that fractures generating earthquakes are approaching a 2D structure and low temporal fractal dimension implies high clustering of earthquake’s epicenters.The b value shows a weak negative correlation with Dc for regions A and C while a weak positive correlation is observed for the region B.Based on b-value and fractal dimension,this study explains the frequency of earthquakes and heterogeneity of the seismogenic structure in this part of the Himalaya.展开更多
Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed...Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition. Then an algorithm for solving systems of block bidiagonal triangular linear equations was given, which is not necessary to treat with the zero elements out of banded systems. A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced, which can quicken the speed of ray-tracing. Finally, the simulation based on this algorithm for ray-tracing in three dimensional media was carried out. Meanwhile, the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above. The convergence condition was assumed that the L-2 norm summation for mk, 1 and mk. 2 in the whole ray path was limited in 10-6. And the calculating speeds of these methods were compared. The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough. In addition, its precision can be controlled according to the requirement of ray-tracing.展开更多
Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-X...Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-Xizang (Tibet) plateau. The longitudinal faults in the thrust zone are mainly of the thrust slipping type. The late Quaternary motion modes and displacement rates are quite different from north to south. Investigation on valleys across the fault shows that the transverse faults are mainly of dextral strike-slipping type with a bit dip displacement. Based on their connections with the longitudinal faults, three types of transverse faults are generalized, namely: the separate fault, the transform fault and the tear fault, and their functions in the segmentation of the thrust fault zone are compared. As the result, the Yingjing-Mabian-Yanjin thrust fault zone is divided into three segments, and earthquakes occurring in these three segments are compared. The tri-section of the Yingjing-Mabian-Yanjin thrust fault zone identified by transverse fault types reflects, on the one hand, the differences in slip rate, earthquake magnitude and pace from each segment, and the coherence of earthquake rupturing pace on the other hand. It demonstrates that the transverse faults control the segmentation to a certain degree, and each type of the transverse faults plays a different role.展开更多
A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60&...A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.展开更多
In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model o...In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.展开更多
On April 20, 2013, an Ms7.0 earthquake occurred in Ya'an-Lushan region, Sichuan Province, China, killing and injuring morethan one thousand people. Therefore, it is critical to outline the areas with potential aft...On April 20, 2013, an Ms7.0 earthquake occurred in Ya'an-Lushan region, Sichuan Province, China, killing and injuring morethan one thousand people. Therefore, it is critical to outline the areas with potential aftershocks before reconstruction andre-settlement as to avoid future disasters. Based on the elastic dislocation theory and multi-layered lithospheric model, we calculate the co-and post-seismic stress changes caused by the Wenchuan and Lushan earthquakes to discuss the relationshipbetween Mw7.9 Wenchuan earthquake and Ms7.0 Lushan earthquake, the influences on the distribution of aftershock caused bythe Lushan earthquake, and the stress changes on major faults in this region. It is shown that the Coulomb failure stress increment on the hypocenter of Lushan earthquake caused by the Wenchuan earthquake is about 0.0037-0.0113 MPa. And the possible maximum value (0.0113 MPa) is larger than the threshold of stress triggering. Therefore, the occurrence of Lushanearthquake is probably effectively promoted by the Wenchuan earthquake. The aftershock distribution is well explained by theco-seismic stress changes of Lushan earthquake. By the two ends of the rupture of Lushan earthquake with increased Coulombfailure stress, a lack of aftershock recordings indicates the high seismic hazard. The stress accumulation and correspondingseismic hazard on the Kangding-Dafu segment of the Xinshuihe fault, the Beichuan-Yingxiu fault, the Pengxian-Guanxianfault, and the Ya'an fault are further increased by the Lushan earthquake and post-seismic process of Wenchuan earthquake.展开更多
In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were ta...In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping(maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction(fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping(it is not pseudotachylite), which could be used as an index of paleo-seismic events.展开更多
The Northern Zhongtiaoshan Fault is a major deep fault at the southern margin of the Yuncheng Basin. There have been few studies on the fault, and the historical earthquakes are few and weak. However, the intensity of...The Northern Zhongtiaoshan Fault is a major deep fault at the southern margin of the Yuncheng Basin. There have been few studies on the fault, and the historical earthquakes are few and weak. However, the intensity of activity on the fault should never be underestimated. Through interpretations of aerial images, topography measurements and excavation of trenches, this paper studied the fault distribution, the surface deformation and the activity of the normal fault south of Salt Lake near the city of Yuncheng. By tracing faults in the three trenches, it was found that there had been at least three large paleoseismic events, at 1–3.5, 3.6–4.4 and 7.4–8.8 ka BP. Employing 14 C dating, we determined the same gravel layers in the uplifted side and downthrown side. Making differential Global Positioning System measurements of the vertical difference and topographic profile, we obtained the mean slip rate of the Northern Zhongtiaoshan Fault since 24.7 ka BP(0.75±0.05 mm/a). Using the results of relevant studies, we calculated the possible vertical fault displacement of one earthquake(2.35 m) and obtained the recurrence interval of characteristic earthquakes as 2940–3360 a after dividing the displacement by the mean slip rate.展开更多
文摘The attenuation of seismic signals is often characterized in the frequency domain using statistical measures of the power spectrum. However, the conventional Fourier transform-based power spectrum estimation methods suffer from time-frequency resolution problems. Wigner-Ville distribution, which is a member of Cohen class time-frequency distributions, possesses many appealing properties, such as time-frequency marginal distribution, time-frequency localization, etc. Therefore, Wigner-Ville distribution offers a new way for estimating the attenuation of seismic signals. This paper initially gives a brief introduction to Wigner-Ville distribution and the smoothed Wigner-Ville distribution that is effective in reducing the cross-term effect, and then presents a method for seismic attenuation estimation based on the instantaneous energy spectrum of the Wigner-Ville distribution. A real data example from central Tarim Basin in western China is presented to illustrate the effectiveness of the proposed method. The results show that the Wigner-Ville distribution-based seismic attenuation estimation method can effectively detect the difference between reef, shoal and lagoon facies by their attenuation properties, indicating that the estimated seismic attenuation can be used for reef and shoal carbonate reservoir characterization.
基金supported by the "12th Five Year Plan" National Science and Technology Major Special Subject:Well Logging Data and Seismic Data Fusion Technology Research(No.2011ZX05023-005-006)
文摘At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
基金sponsored by the project of the Chinese National Key Basic Research Program on "The failure mechanism and distribution rule of slopes under strong earthquakes" (Grant No. 2008CB425801)the Education Department Innovation Research Team Program (Grant No. IRT0812)
文摘The 5.12 Wenchuan Earthquake in 2008 induced hundreds of large-scale landslides. This paper systematically analyzes 112 large-scale landslides (surface area > 50000 m2), which were identified by interpretation of remote sensing imagery and field investigations. The analysis suggests that the distribution of large-scale landslides is affected by the following four factors: (a) distance effect: 80% of studied large-scale landslides are located within a distance of 5 km from the seismic faults. The farther the distance to the faults, the lower the number of large-scale landslides; (b) locked segment effect: the large-scale landslides are mainly located in five concentration zones closely related with the crossing, staggering and transfer sections between one seismic fault section and the next one, as well as the end of the NE fault section. The zone with the highest concentration was the Hongbai-Chaping segment, where a great number of large-scale landslides including the two largest landslides were located. The second highest concentration of large-scale landslides was observed in the Nanba-Donghekou segment at the end of NE fault, where the Donghekou landslide and the Woqian landslide occurred; (c) Hanging wall effect: about 70% of the large-scale landslides occurred on the hanging wall of the seismic faults; and (d) direction effect: in valleys perpendicular to the seismic faults, the density of large-scale landslides on the slopes facing the seismic wave is obviously higher than that on the slopes dipping in the same direction as the direction of propagation of the seismic wave. Meanwhile, it is found that the sliding and moving directions of large-scale landslides are related to the staggering direction of the faults in each section. In Qingchuan County where the main fault activity was horizontal twisting and staggering, a considerable number of landslides showed the feature of sliding and moving in NE direction which coincides with the staggering direction of the seismic faults.
基金Under the auspices of National Natural Science Foundation of China (No. 40676016, No. 10471039)National Key Project for Basics Research (No. 2003CB415101-03, No. 2004CB418304)+1 种基金Key Project of Chinese Academy of Sciences (No. KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (No. E03004)
文摘A box model of the interhemispheric thermohaline circulation (THC) in atmosphere-ocean for global cli-mate is considered. By using the multi-scales method, the asymptotic solution of a simplified weakly nonlinear model is discussed. Firstly, by introducing first scale, the zeroth order approximate solution of the model is obtained. Sec-ondly, by using the multi-scales, the first order approximate equation of the model is found. Finally, second order ap-proximate equation is formed to eliminate the secular terms, and a uniformly valid asymptotic expansion of solution is decided. The multi-scales solving method is an analytic method which can be used to analyze operation sequentially. And then we can also study the diversified qualitative and quantitative behaviors for corresponding physical quantities. This paper aims at providing a valid method for solving a box model of the nonlinear equation.
基金University Grants Commission(UGC),Nepal for providing financial support。
文摘This study investigates the spatial and temporal variation of fractal dimension and b-value for the eastern part of the Himalaya and adjoining area(26°N–31°N and 87°E–98°E).The analysis is carried out on the earthquake dataset of 1373 events(Mc=4.0)by sliding window technique for the period 1964 to 2020.The region is divided into three sub regions A(87°E–92°E),B(92°E–94°E)and C(94°E–98°E).The b-value computed for the region A comprising eastern Nepal is smaller compared to other two regions which infers the possible high stress and asperities in the region.High spatial fractal dimension(Dc>1.5)and low temporal fractal dimension(Dt<0.31)are computed for the regions.High spatial fractal dimension may indicate that fractures generating earthquakes are approaching a 2D structure and low temporal fractal dimension implies high clustering of earthquake’s epicenters.The b value shows a weak negative correlation with Dc for regions A and C while a weak positive correlation is observed for the region B.Based on b-value and fractal dimension,this study explains the frequency of earthquakes and heterogeneity of the seismogenic structure in this part of the Himalaya.
基金Project(40674071) supported by the National Natural Science Foundation of ChinaProject(KFAS2002-2003) supported by the Korea Foundation for Advanced Studies
文摘Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition. Then an algorithm for solving systems of block bidiagonal triangular linear equations was given, which is not necessary to treat with the zero elements out of banded systems. A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced, which can quicken the speed of ray-tracing. Finally, the simulation based on this algorithm for ray-tracing in three dimensional media was carried out. Meanwhile, the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above. The convergence condition was assumed that the L-2 norm summation for mk, 1 and mk. 2 in the whole ray path was limited in 10-6. And the calculating speeds of these methods were compared. The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough. In addition, its precision can be controlled according to the requirement of ray-tracing.
基金The research was sponsored bythe keyresearch project entitled"Seismic Safety Evaluation and Structural Earthquake Resistance"under the 10th Five-Year Program of the ChinaEarthquake Administration the Joint Earthquake Science Foundation of China (0101302) Contribution number :2005A001 ,the Institute of Crustal Dynamics ,CEA.
文摘Segmentation of the thrust fault zone is a basic problem for earthquake hazard evaluation. The Yingjing-Mabian-Yanjin thrust fault zone is an important seismic belt NW-trending in the southeast margin of the Qinghal-Xizang (Tibet) plateau. The longitudinal faults in the thrust zone are mainly of the thrust slipping type. The late Quaternary motion modes and displacement rates are quite different from north to south. Investigation on valleys across the fault shows that the transverse faults are mainly of dextral strike-slipping type with a bit dip displacement. Based on their connections with the longitudinal faults, three types of transverse faults are generalized, namely: the separate fault, the transform fault and the tear fault, and their functions in the segmentation of the thrust fault zone are compared. As the result, the Yingjing-Mabian-Yanjin thrust fault zone is divided into three segments, and earthquakes occurring in these three segments are compared. The tri-section of the Yingjing-Mabian-Yanjin thrust fault zone identified by transverse fault types reflects, on the one hand, the differences in slip rate, earthquake magnitude and pace from each segment, and the coherence of earthquake rupturing pace on the other hand. It demonstrates that the transverse faults control the segmentation to a certain degree, and each type of the transverse faults plays a different role.
基金supported by the National Science and Technology Support Program(2012BAK19B02-03)Natural Science Foundation of China(41204057)
文摘A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.
基金the Doctor Research Fund for Universities of China (No.20070616004)the National High Technology Research and Development Program of China (No.2007AA060505)
文摘In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.
基金supported by National Natural Science Foundation of China (Grant Nos.41074052,41204067,41174086 and 41021003)Special Project Seismic Commonwealth Research (Grant No.201308013)Key Development Program of Chinese Academy of Sciences (Grant No.KZZD-EW-TZ-05)
文摘On April 20, 2013, an Ms7.0 earthquake occurred in Ya'an-Lushan region, Sichuan Province, China, killing and injuring morethan one thousand people. Therefore, it is critical to outline the areas with potential aftershocks before reconstruction andre-settlement as to avoid future disasters. Based on the elastic dislocation theory and multi-layered lithospheric model, we calculate the co-and post-seismic stress changes caused by the Wenchuan and Lushan earthquakes to discuss the relationshipbetween Mw7.9 Wenchuan earthquake and Ms7.0 Lushan earthquake, the influences on the distribution of aftershock caused bythe Lushan earthquake, and the stress changes on major faults in this region. It is shown that the Coulomb failure stress increment on the hypocenter of Lushan earthquake caused by the Wenchuan earthquake is about 0.0037-0.0113 MPa. And the possible maximum value (0.0113 MPa) is larger than the threshold of stress triggering. Therefore, the occurrence of Lushanearthquake is probably effectively promoted by the Wenchuan earthquake. The aftershock distribution is well explained by theco-seismic stress changes of Lushan earthquake. By the two ends of the rupture of Lushan earthquake with increased Coulombfailure stress, a lack of aftershock recordings indicates the high seismic hazard. The stress accumulation and correspondingseismic hazard on the Kangding-Dafu segment of the Xinshuihe fault, the Beichuan-Yingxiu fault, the Pengxian-Guanxianfault, and the Ya'an fault are further increased by the Lushan earthquake and post-seismic process of Wenchuan earthquake.
基金supported by National Natural Science Foundation of China (Grant No. 41172193)Basic Scientific Fund of the Institute of Geology, China Earthquake Administration (Grant No. IGCEA-1107)
文摘In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping(maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction(fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping(it is not pseudotachylite), which could be used as an index of paleo-seismic events.
基金supported by the National Natural Science Foundation of China(Grant No.41271019)the China Earthquake Administration Research Fund(Grant No.200908001)
文摘The Northern Zhongtiaoshan Fault is a major deep fault at the southern margin of the Yuncheng Basin. There have been few studies on the fault, and the historical earthquakes are few and weak. However, the intensity of activity on the fault should never be underestimated. Through interpretations of aerial images, topography measurements and excavation of trenches, this paper studied the fault distribution, the surface deformation and the activity of the normal fault south of Salt Lake near the city of Yuncheng. By tracing faults in the three trenches, it was found that there had been at least three large paleoseismic events, at 1–3.5, 3.6–4.4 and 7.4–8.8 ka BP. Employing 14 C dating, we determined the same gravel layers in the uplifted side and downthrown side. Making differential Global Positioning System measurements of the vertical difference and topographic profile, we obtained the mean slip rate of the Northern Zhongtiaoshan Fault since 24.7 ka BP(0.75±0.05 mm/a). Using the results of relevant studies, we calculated the possible vertical fault displacement of one earthquake(2.35 m) and obtained the recurrence interval of characteristic earthquakes as 2940–3360 a after dividing the displacement by the mean slip rate.