The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the powe...The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the power spectra. The high reference line and low reference line of station are then identified by drawing a probability density function graph( PDF)using the power spectral probability density function. Moreover, according to the anomalies of PDF graphs in 85 seismic stations,the abnormal noise is divided into four categories: dropped packet, low noise, high noise, and median noise anomalies.Afterwards,four selection methods are found by the high or low noise reference line of the stations,and the system of real-time monitoring of seismic noise is formed by combining the four selection methods. Noise records of 85 seismic stations in Fujian Province in July2013 are selected for verification,and the results show that the anomalous noise-recognition system could reach a 90% success rate at most stations and the effect of selection are very good. Therefore,it could be applied to the seismic noise real-time monitoring in stations.展开更多
On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at di...On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.展开更多
This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometr...This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometric properties of the power spectral density function (PSDF) of the ground acceleration are developed first. Subsequently, deterministic measures for the frequency content of the ground acceleration are also developed. These measures are then used for identifying resonance and criticality in stochastic earthquake models and 110 acceleration records measured at rock, stiff, medium and soft soil sites. The unfavorable earthquake record for a given structure is defined as the record having a narrow frequency content and dominant frequency close to the structure fundamental natural frequency. Accordingly, the measures developed in this study may provide a basis for selecting records that are capable of producing the highest structural response. Numerical verifications are provided on damage caused to structures by identified resonant records.展开更多
基金sponsored by the National Key Technology R&D Program of China(2009BAK55B00)the Earthquake Industry Research Project(201508012)
文摘The noise data in vertical component records of 85 seismic stations in Fujian Province during 2012 is used as the research object in this paper. The noise data is divided into fiveminute segments to calculate the power spectra. The high reference line and low reference line of station are then identified by drawing a probability density function graph( PDF)using the power spectral probability density function. Moreover, according to the anomalies of PDF graphs in 85 seismic stations,the abnormal noise is divided into four categories: dropped packet, low noise, high noise, and median noise anomalies.Afterwards,four selection methods are found by the high or low noise reference line of the stations,and the system of real-time monitoring of seismic noise is formed by combining the four selection methods. Noise records of 85 seismic stations in Fujian Province in July2013 are selected for verification,and the results show that the anomalous noise-recognition system could reach a 90% success rate at most stations and the effect of selection are very good. Therefore,it could be applied to the seismic noise real-time monitoring in stations.
基金funded by the Special Fund for Earthquake Scientific Research of China(201308004,201308009)
文摘On the basis of the absolute and relative gravity observations in North China,spatial dynamic variation of regional gravity fields is obtained. A multi-scale decomposition technique is used to separate anomalies at different depths,and give some explanation to gravity variation at different time space scales. Gravity variation trends in North China are improved. Based on this result and the analysis of wavelet power spectrum,the images of the depth of wavelet approximation and detail are obtained. The results obtained are of scientific significance for the deep understanding of potential seismic risk in North China from gravity variations in different time space scales.
基金Project (No. JSPS-P-08073)supported by the Japanese Society for the Promotion of Science
文摘This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometric properties of the power spectral density function (PSDF) of the ground acceleration are developed first. Subsequently, deterministic measures for the frequency content of the ground acceleration are also developed. These measures are then used for identifying resonance and criticality in stochastic earthquake models and 110 acceleration records measured at rock, stiff, medium and soft soil sites. The unfavorable earthquake record for a given structure is defined as the record having a narrow frequency content and dominant frequency close to the structure fundamental natural frequency. Accordingly, the measures developed in this study may provide a basis for selecting records that are capable of producing the highest structural response. Numerical verifications are provided on damage caused to structures by identified resonant records.