Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in th...Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.展开更多
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ...In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.展开更多
Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology ...Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology in engineering seismology is borrowed here to study the dynamic exciting sourec, i.e., the wheel-rail unevenness. A dynamic coupled train-track-3D ground model is combined with a genetic algorithm for the inversion. The solution space of the inversion variables, the objective function and the solving genetic strategy of the inversion are determined, and a joint inversion for the wheel-rail unevenness source function and some track structure parameters is therefore designed. The wheel-rail unevenness PSD, being the source function of No. 13 Beijing urban railway, is obtained by the inversoin based on observed data in the field. The result indicates that the source function discribes the track unevenness in the range of wavelength over 1.2 m, and reflects properly wheel irregularites in the range of wavelength shorter than 1.2 m. It should be noticed that the urban rail traffic is not very fast, and this range of short wavelength is exactly corresponding to the main frequency band of environmental vibrations from the traffic. The unevenness of wavelength under 1.2 m is underestimated, and the ground vibration in the main frequency band must be underestimated consequently, if the track unevenness spectrum is taken as the source function. Rather than the track spectrum reflecting just the evenness of track, the wheel-rail spectrum expresses both the track unevenness and the irregularities of wheels, and therefore is more suitable to be the source function of urban railway traffic. It is also convinced that the exciting source inversion according to observed ground vibrations is an effective way to detect quantitatively the combined wheel-rail unevenness.展开更多
基金Projects 40574057 and 40874054 supported by the National Natural Science Foundation of ChinaProjects 2007CB209400 by the National Basic Research Program of ChinaFoundation of China University of Mining and Technology (OF4471)
文摘Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.
基金supported by the Research Project of Tianjin Earthquake Agency (No. Yb202101, Zd202101)
文摘In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.
基金supported by the National Natural Science Foundation of China (Grant No. 50538030)
文摘Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology in engineering seismology is borrowed here to study the dynamic exciting sourec, i.e., the wheel-rail unevenness. A dynamic coupled train-track-3D ground model is combined with a genetic algorithm for the inversion. The solution space of the inversion variables, the objective function and the solving genetic strategy of the inversion are determined, and a joint inversion for the wheel-rail unevenness source function and some track structure parameters is therefore designed. The wheel-rail unevenness PSD, being the source function of No. 13 Beijing urban railway, is obtained by the inversoin based on observed data in the field. The result indicates that the source function discribes the track unevenness in the range of wavelength over 1.2 m, and reflects properly wheel irregularites in the range of wavelength shorter than 1.2 m. It should be noticed that the urban rail traffic is not very fast, and this range of short wavelength is exactly corresponding to the main frequency band of environmental vibrations from the traffic. The unevenness of wavelength under 1.2 m is underestimated, and the ground vibration in the main frequency band must be underestimated consequently, if the track unevenness spectrum is taken as the source function. Rather than the track spectrum reflecting just the evenness of track, the wheel-rail spectrum expresses both the track unevenness and the irregularities of wheels, and therefore is more suitable to be the source function of urban railway traffic. It is also convinced that the exciting source inversion according to observed ground vibrations is an effective way to detect quantitatively the combined wheel-rail unevenness.