The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruct...The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.展开更多
Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in th...Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.展开更多
The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - ...The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.展开更多
Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide h...Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.展开更多
Activation of seismic activity in the Vrancha area, in the Black Sea region resulted in considerable activation of landslides and in increasing of landslide hazard in earthquake-prone areas of Ukraine. Totally about 2...Activation of seismic activity in the Vrancha area, in the Black Sea region resulted in considerable activation of landslides and in increasing of landslide hazard in earthquake-prone areas of Ukraine. Totally about 23,000 landslides were identified in the territory of Ukraine. Experimental and analytical studies of slumps in the Central Livadia landslide system were carried out with the aid of the ZSUV monitoring system. Experimental data were obtained concerning impact of natural seismic factors on the Central Livadia landslide system and on the Palace itself. The South-East wing of the Livadia Palace continuously vibrates relative to a certain midposition. The increase of the amplitude of the faqade deviation from the midposition may be caused by activation of slopes as a result of additional subsidence and ground water rise due to local earthquakes in the Black Sea and because of some other factors.展开更多
基金supported by the National Key Technology R&D Program(Grant No. 2011BAK12B01)the Young Foundation of National Natural Science of China(Grant No.41202210)+1 种基金the Education Department Innovation Research Team Program(Grant No.IRT0812)the Young Foundation of Chengdu University of Technology and the Education Department of Sichuan Province (Grant Nos.2010QJ15 and 11ZB262)
文摘The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.
基金financially supported by the National Basic Research program(973 program)of China(Grant No.2013CB733201)the Key Program of the Chinese Academy of Sciences(KZZD-EW-05-01)the“Hundred Talents”program of Chinese Academy of Sciences for supporting the research
文摘Shallow fissures, being the main infiltration paths of fluid on the surface of a slope, played an important role in the whole process of a landslide. However, the spatial distribution characteristics of fissures in the slope are difficult to be determined. In this study, we attempted to characterize the variation pattern of slope fissures along depth in the Wenchuan earthquake area in Sichuan Province by combining engineering geological investigation, geomorphologic analysis and geophysical investigation. The geophysical methods that were used in this study include Multichannel Analysis of Surface Wave(MASW), Ground Penetrating Radar(GPR) and Electrical Resistivity Tomography(ERT). The results suggested that geophysical parameters(shear wave velocity, electromagnetic signals attenuation and resistivity) could provide valuable information for the spatial network of shallow fissures. Through the verification by engineering geological survey and geophysical sensitivity analysis, this work highlighted that MASW was the most appropriate technique to delineate the propagation of shallow fissures in a gravel soil slope.
基金supported financially by the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-5)the National Science and Technology Support Plan Project (2009BAK56B05)the National Natural Science Foundation of China (40802072)
文摘The Wenchuan Ms 8.0 earthquake on May 12, 2008 induced a huge number of landslides. The distribution and volume of the landslides are very important for assessing risks and understanding the landslide - debris flow - barrier lake - bursts flood disaster chain. The number and the area of landslides in a wide region can be easily obtained by remote sensing technique, while the volume is relatively difficult to obtain because it requires some detailed geometric information of slope failure surface and sub-surface. Different empirical models for estimating landslide volume were discussed based on the data of 107 landslides in the earthquake-stricken area. The volume data of these landslides were collected by field survey. Their areas were obtained by interpreting remote sensing images while their apparent friction coefficients and height were extracted from the images unifying DEM (digital elevation model). By analyzing the relationships between the volume and the area, apparent friction coefficients, and the height, two models were established, one for the adaptation of a magnitude scale landslide events in a wide range of region, another for the adaptation in a small scope. The correlation coefficients (R2) are 0.7977 and 0.8913, respectively. The results estimated by the two models agree well with the measurement data.
基金supported by the 973 Program of China (Grant No.2008CB425802)the International Cooperation Program of the Ministry of Science and Technology of China (Grant No.2007DFA21150 and 2009DFB20196)
文摘Earthquake-triggered landslides have aroused widespread attention because of their tremendous ability to harm people's lives and properties.The best way to avoid and mitigate their damage is to develop landslide hazard maps and make them available to the public in advance of an earthquake.Future construction can then be built according to the level of hazard and existing structures can be retrofit as necessary.During recent years various approaches have been made to develop landslide hazard maps using statistical analysis or physical models.However,these methods have limitations.This study introduces a new GIS-based approach,using the contributing weight model,to evaluate the hazard of seismically-induced landslides.In this study,the city and surrounding area of Dujiangyan was selected as the research area because of its moderate-high seismic activity.The parameters incorporated into the model that related to the probability of landslide occurrence were:slope gradient,slope aspect,geomorphology,lithology,base level,surface roughness,earthquake intensity,fault proximity,drainage proximity,and road proximity.The parameters were converted into raster data format with a resolution of 25×25m2 pixels.Analysis of the GIS correlations shows that the highest earthquake-induced landslide hazard areas are mainly in the hills and in some of the moderately steep mountainous areas of central Dujiangyan.The highest hazard zone covers an area of 11.1% of the study area,and the density distribution of seismically-induced landslides was 3.025/km2 from the 2008 Wenchuan earthquake.The moderately hazardous areas are mainly distributed within the moderately steep mountainous regions of the northern and southeastern parts of the study area and the hills of the northeastern part;covering 32.0% of the study area and with a density distribution of 2.123/km2 resulting from the Wenchuan earthquake.The lowest hazard areas are mainly distributed in the topographically flat plain in the northeastern part and some of the relatively gently slopes in the moderately steep mountainous areas of the northern part of Dujiangyan and the surrounding area.The lowest hazard areas cover 56.9% of the study area and exhibited landslide densities of 0.941/km2 and less from the Wenchuan earthquake.The quality of the hazard map was validated using a comparison with the distribution of landslides that were cataloged as occurring from the Wenchuan earthquake.43.1% of the study area consists of high and moderate hazardous zones,and these regions include 83.5% of landslides caused by the Wenchuan earthquake.The successful analysis shows that the contributing weight model can be effective for earthquake-triggered landslide hazard appraisal.The model's results can provide the basis for risk management and regional planning is.
文摘Activation of seismic activity in the Vrancha area, in the Black Sea region resulted in considerable activation of landslides and in increasing of landslide hazard in earthquake-prone areas of Ukraine. Totally about 23,000 landslides were identified in the territory of Ukraine. Experimental and analytical studies of slumps in the Central Livadia landslide system were carried out with the aid of the ZSUV monitoring system. Experimental data were obtained concerning impact of natural seismic factors on the Central Livadia landslide system and on the Palace itself. The South-East wing of the Livadia Palace continuously vibrates relative to a certain midposition. The increase of the amplitude of the faqade deviation from the midposition may be caused by activation of slopes as a result of additional subsidence and ground water rise due to local earthquakes in the Black Sea and because of some other factors.