Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P...Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P-wave seismic scattering coefficient equation in terms of fluid factor,shear modulus and density of background homogeneous media and perturbation media.With this equation as forward solver,a pre-stack seismic Bayesian inversion method is proposed to estimate the fluid factor of heterogeneous media.In this method,Cauchy distribution is utilized to the ratios of fluid factors,shear moduli and densities of perturbation media and background homogeneous media,respectively.Gaussian distribution is utilized to the likelihood function.The introduction of constraints from initial smooth models enhances the stability of the estimation of model parameters.Model test and real data example demonstrate that the proposed method is able to estimate the fluid factor of heterogeneous media from pre-stack seismic data directly and reasonably.展开更多
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003&2011ZX05006-002)
文摘Elastic wave inverse scattering theory plays an important role in parameters estimation of heterogeneous media.Combining inverse scattering theory,perturbation theory and stationary phase approximation,we derive the P-wave seismic scattering coefficient equation in terms of fluid factor,shear modulus and density of background homogeneous media and perturbation media.With this equation as forward solver,a pre-stack seismic Bayesian inversion method is proposed to estimate the fluid factor of heterogeneous media.In this method,Cauchy distribution is utilized to the ratios of fluid factors,shear moduli and densities of perturbation media and background homogeneous media,respectively.Gaussian distribution is utilized to the likelihood function.The introduction of constraints from initial smooth models enhances the stability of the estimation of model parameters.Model test and real data example demonstrate that the proposed method is able to estimate the fluid factor of heterogeneous media from pre-stack seismic data directly and reasonably.