The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the ...The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the experimental works. However, the analytical methods with higher accuracy often require large computational loads and are not necessarily preferred in the actual design practice. On the other hand, while the response spectrum method is not accurate compared to the aforementioned methods, it can provide useful design guidelines in the preliminary stage for structure-pile systems under soil liquefaction with acceptable accuracy. In this paper, the previously proposed response spectrum method for a structure-pile-soil system is used where the effect of soil liquefaction is taken into account by introducing the so-called p-multiplier method. It is shown that, while in the case of inner partial liquefaction with a non-liquefied layer at the top, the demand on the pile moment is large due to the inertial effect of that non-liquefied layer at the top, in the case of overall liquefaction near the ground surface, the demand is smaller than the case of inner partial liquefaction.展开更多
文摘The time-history response of a structure-pile system during soil liquefaction is highly complicated and several analytical methods have been proposed through the accuracy verification based on the comparison with the experimental works. However, the analytical methods with higher accuracy often require large computational loads and are not necessarily preferred in the actual design practice. On the other hand, while the response spectrum method is not accurate compared to the aforementioned methods, it can provide useful design guidelines in the preliminary stage for structure-pile systems under soil liquefaction with acceptable accuracy. In this paper, the previously proposed response spectrum method for a structure-pile-soil system is used where the effect of soil liquefaction is taken into account by introducing the so-called p-multiplier method. It is shown that, while in the case of inner partial liquefaction with a non-liquefied layer at the top, the demand on the pile moment is large due to the inertial effect of that non-liquefied layer at the top, in the case of overall liquefaction near the ground surface, the demand is smaller than the case of inner partial liquefaction.