Due to the extremely high magnitude, long duration, and the complicated geo-environment in the disaster area, the great 5.12 Wenchuan Earthquake not only produced a huge number of landslides and rockfalls, but also in...Due to the extremely high magnitude, long duration, and the complicated geo-environment in the disaster area, the great 5.12 Wenchuan Earthquake not only produced a huge number of landslides and rockfalls, but also involved complicated dynamic processes. These processes are quite different from the characteristics of landslides and rockfalls under general gravitational force, and presently human knowledge is very poor in this field. In order to describe the special dynamic processes, some terms such as shattering-cracking, shattering-sliding, shattering-falls and ejection are defined in this paper. Combined with slope structures, a mechanism classification system of strong earthquake-triggered landslide and rockfall is suggested, which is divided into 5 categories and 14 types. This paper also analyzes the basic characteristics, dynamic processes and geo-mechanics conceptual models of some typologies, especial the type of shattering-sliding for most large-scales landsides. This paper initially reveals the formation mechanism, geo-mechanics models and dynamic features of landslides and rockfalls triggered by the great Wenchuan Earthquake.展开更多
Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a ...Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.展开更多
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc...In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow.展开更多
We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide thes...We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.展开更多
Seismic behaviors of base-isolated structures are highly affected by the nonlinear characteristics of the isolated systems. Most of the currently available methods for the identification of nonlinear properties of iso...Seismic behaviors of base-isolated structures are highly affected by the nonlinear characteristics of the isolated systems. Most of the currently available methods for the identification of nonlinear properties of isolator require either the measurements of all structural responses or the assumptions of the proper mathematic models for the rubber-bearings. In this paper, two algorithms are proposed to identify the nonlinear properties of rubber-bearings in base-isolated buildings using only partial measurements of structural dynamic responses. The first algorithm is applicable to the case that proper mathematical models are available for the base isolators. It is based on the extended Kalman filter for the parametric identification of nonlinear models of rubber-bearing isolators and buildings. For the general case where it is difficult to establish a proper mathematical model to describe the nonlinear behavior of a rubber-bearing isolator, another algorithm is proposed to identify the model-tYee nonlinear property of rubber-bearing isolated system. Nonlinear effect of rubber-bearing is treated as 'fictitious loading' on the linear building under severe earthquake. The algorithm is based on the sequential Kalman estimator for the structural responses and the least-squares estimation of the 'fictitious loading' to identify the nonlinear force of rubber-bearing isolator. Simulation results demonstrate that the proposed two algorithms are capable of identifying the nonlinear properties of rubber-bearing isolated systems with good accuracy.展开更多
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2008CB425801)
文摘Due to the extremely high magnitude, long duration, and the complicated geo-environment in the disaster area, the great 5.12 Wenchuan Earthquake not only produced a huge number of landslides and rockfalls, but also involved complicated dynamic processes. These processes are quite different from the characteristics of landslides and rockfalls under general gravitational force, and presently human knowledge is very poor in this field. In order to describe the special dynamic processes, some terms such as shattering-cracking, shattering-sliding, shattering-falls and ejection are defined in this paper. Combined with slope structures, a mechanism classification system of strong earthquake-triggered landslide and rockfall is suggested, which is divided into 5 categories and 14 types. This paper also analyzes the basic characteristics, dynamic processes and geo-mechanics conceptual models of some typologies, especial the type of shattering-sliding for most large-scales landsides. This paper initially reveals the formation mechanism, geo-mechanics models and dynamic features of landslides and rockfalls triggered by the great Wenchuan Earthquake.
基金Projects(2016YFE0200100,2018YFC1505300-5.3)supported by the National Key Research&Development Plan of ChinaProject(51639002)supported by the Key Program of National Natural Science Foundation of China
文摘Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified factors of uncertainties and complexity.The Bayesian belief network(BBN)is an effective tool to present a suitable framework to handle insights into such uncertainties and cause–effect relationships.The intention of this study is to use a hybrid approach methodology for the development of BBN model based on cone penetration test(CPT)case history records to evaluate seismic soil liquefaction potential.In this hybrid approach,naive model is developed initially only by an interpretive structural modeling(ISM)technique using domain knowledge(DK).Subsequently,some useful information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model.The results of the BBN models are compared and validated with the available artificial neural network(ANN)and C4.5 decision tree(DT)models and found that the BBN model developed by hybrid approach showed compatible and promising results for liquefaction potential assessment.The BBN model developed by hybrid approach provides a viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction.This study also presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied sites,owing to know the most likely scenario of the liquefaction phenomenon.
基金This work is funded by the Edinburgh Anisotropy Project of the British Geological Survey.
文摘In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow.
基金sponsored by the Youth Fund of National Natural Science Foundation of China(41302171)National Natural Science Foundation of China(41372345)
文摘We collect seismic moment tensors of the earthquakes occurring from 1900 to 2013 in and around the Chinese mainland and summarize the surface ruptures and displacements of 70 earthquakes with M S≥7. 0. We divide these large earthquakes into three types. Type A contains earthquakes with surface ruptures and displacements. Type B is earthquakes without displacements and Type C is those without any of this data. We simulate a triangular distribution of displacements for Type B and C. Then,we segment these large earthquakes by using their displacements and surface ruptures. Finally,kinematic models are determined from earthquake data and Bicubic Bessel spline functions. The results show that,first of all,the reasonability and spatial consistency of defined models are advanced.Strain rates have better continuity and are comparable with geologic and geodetic results in Himalaya thrust fault zones. The strain rates decrease in the Tarim basin and the Altun Tagh fault zones because of their low seismicity. The direction of compressional deformation in Gobi-Altay is changed from SE to NE and its extensional direction is changed from NE to NW. The extensional deformation in the Ordos block is diminished obviously. Secondly,earthquakes account for 30- 50% of expected motion of India relative to Eurasia determined from the NUVEL-1A model,with a missing component of 20 mm / a which may contain aseismic deformation such as fault creep and folds,the missing parts of earthquake data and elastic strain energy released by potential earthquakes.
基金supported by the National Natural Science Foundation of China(Grant No.51178406)the Research Funding from the State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University(Grant No.SLDRCE10-MB-01)the Fujian Natural Science Foundation Project(Grant No.2010J01309)
文摘Seismic behaviors of base-isolated structures are highly affected by the nonlinear characteristics of the isolated systems. Most of the currently available methods for the identification of nonlinear properties of isolator require either the measurements of all structural responses or the assumptions of the proper mathematic models for the rubber-bearings. In this paper, two algorithms are proposed to identify the nonlinear properties of rubber-bearings in base-isolated buildings using only partial measurements of structural dynamic responses. The first algorithm is applicable to the case that proper mathematical models are available for the base isolators. It is based on the extended Kalman filter for the parametric identification of nonlinear models of rubber-bearing isolators and buildings. For the general case where it is difficult to establish a proper mathematical model to describe the nonlinear behavior of a rubber-bearing isolator, another algorithm is proposed to identify the model-tYee nonlinear property of rubber-bearing isolated system. Nonlinear effect of rubber-bearing is treated as 'fictitious loading' on the linear building under severe earthquake. The algorithm is based on the sequential Kalman estimator for the structural responses and the least-squares estimation of the 'fictitious loading' to identify the nonlinear force of rubber-bearing isolator. Simulation results demonstrate that the proposed two algorithms are capable of identifying the nonlinear properties of rubber-bearing isolated systems with good accuracy.