In tectonically active mountain belts such as the Taiwan(Fig.1a),frequent landslides affect the stability of mountain slopes,and landslides favour river erosion of disrupted masses.In the climatic and geodynamic conte...In tectonically active mountain belts such as the Taiwan(Fig.1a),frequent landslides affect the stability of mountain slopes,and landslides favour river erosion of disrupted masses.In the climatic and geodynamic context of Taiwan with heavy rainfall,approximate typhoon frequency of 3 -5 per year,rapid uplift of~5-10 mm yr^(-1) and strong denudation rate.Landslides are among the most common earthquake induced secondary effects and are causing huge damage展开更多
On August 8^(th), 2017, an Ms 7.0 magnitude earthquake occurred in Jiuzhaigou County, northern Sichuan Province, China. The Jiuzhaigou Valley World National Park was the most affected area due to the epicentre being l...On August 8^(th), 2017, an Ms 7.0 magnitude earthquake occurred in Jiuzhaigou County, northern Sichuan Province, China. The Jiuzhaigou Valley World National Park was the most affected area due to the epicentre being located in the scenic area of the park. Understanding the distribution characteristics of landslides triggered by earthquakes to help protect the natural heritage sites in Jiuzhaigou Valley remains a scientific challenge. In this study, a relatively complete inventory of the coseismic landslides triggered by the earthquake was compiled through the interpretation of high-resolution images combined with a field investigation. The results indicate thatcoseismic landslides not only are concentrated in Rize Gulley, Danzu Gully and Zezhawa Gully in the study area but also occur in the front part of Shuzheng Gully along the road network(from the entrance of Jiuzhaigou Valley to Heye Village). The landslides predominantly occur on the east-and southeastfacing slopes in the study area, which is a result of the integrated action of the valley direction and fault movement direction. The back-slope effect and the slope structure caused the difference in coseismic landslide distribution within the three gullies(Danzu Gully, Rize Gully, and Zezhawa Gully) near the inferred fault. In addition, the topographic position index was used to analyse the impact of microlandforms on earthquake-triggered landslides by considering the effect of the slope angle. The study results reveal a higher concentration of landslides in the slope position class of the middle slope(30°-50°) in Jiuzhaigou Valley. These findings can provide scientific guidance for the protection of natural heritage sites and post-disaster reconstruction in Jiuzhaigou Valley.展开更多
Nepal was hit by a 7.8 magnitude earthquake on 25^(th) April,2015.The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal.We have developed a landslide susceptibility...Nepal was hit by a 7.8 magnitude earthquake on 25^(th) April,2015.The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal.We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork,using bivariate statistical model with different landslide causative factors.From the investigation,it is observed that most of the coseismic landslides are independent of previous landslides.Out of 3,716 mapped landslides,we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model.A total of 11 different landslide-influencing parameters were considered.These include slope gradient,slope aspect,plan curvature,elevation,relative relief,Peak Ground Acceleration(PGA),distance from epicenters of the mainshock and major aftershocks,lithology,distance of the landslide from the fault,fold,and drainage line.The success rate of 87.66% and the prediction rate of86.87% indicate that the model is in good agreement between the developed susceptibility map and theexisting landslides data.PGA,lithology,slope angle and elevation have played a major role in triggering the coseismic mass movements.This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.展开更多
Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to t...Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to the west of a major scenic area, causing 25 deaths and injuring 525, and the Park was seriously affected. The objective of this study was to explore the controls of seismogenic fault and topographic factors on the spatial patterns of these landslides. Immediately after the main shock, field survey, remote-sensing investigations, and statistical and spatial analysis were undertaken. At least 2212 earthquake-triggered landslides were identified, covering a total area of 11.8 km^2. Thesewere mainly shallow landslides and rock falls. Results demonstrated that landslides exhibited a close spatial correlation with seismogenic faults. More than 85% of the landslides occurred at 2200 to 3700 m elevations. The largest quantity of landslides was recorded in places with local topographic reliefs ranging from 200 to 500 m. Slopes in the range of ~20°-50° are the most susceptible to failure. Landslides occurred mostly on slopes facing east-northeast(ENE), east(E), east-southeast(ESE), and southeast(SE), which were nearly vertical to the orientation of the seismogenic fault slip. The back-slope direction and thin ridge amplification effects were documented. These results provide insights on the control of the spatial pattern of earthquake-triggered landslides modified by the synergetic effect of seismogenic faults and topography.展开更多
The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for...The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction.In this paper,a logistic regression model was developed within the framework of GIS to map landslide susceptibility.Qingchuan County,a heavily affected area,was selected for the study.Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images(ADS40 aerial imagery,SPOT5 imagery and TM imagery,etc.) and field surveys.The Certainly Factor method was used to find the influencial factors,indicating that lithologic groups,distance from major faults,slope angle,profile curvature,and altitude are the dominant factors influencing landslides.The weight of each factor was determined using a binomial logistic regression model.Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes.Major faults have the most significant impact,and landslides will occur most likely in areas near the faults.Onethird of the area has a high or very high susceptibility,located in the northeast,south and southwest,including 65.3% of all landslides coincident with the earthquake.The susceptibility map can reveal the likelihood of future failures,and it will be useful for planners during the rebuilding process and for future zoning issues.展开更多
The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of...The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of 19 km2 with a maximum width of 5-5 km and an estimated residual volume of 3 × 108 ma. The objectives of this study were to identify the characteristics and failure mechanism of this landslide. In this study, based on field investigations, aerial photography, and profile surveys, the boundary, lithology, structure of the strata, and characteristics of the landslide deposits were determined. A gently angled weak interlayer consisting of shale was the main factor contributing to the occurrence of the Lamuajue landslide. The deposition area can be divided into three zones: zone A is an avalanche deposition area mainly composed of blocks, fragments, and debris with diameters ranging from o.i m to 3 m; zone B is a residual integrated rock mass deposition area with large blocks, boulders and "fake bedrock"; and zone C is a deposition zone of limestone blocks and fragments. Three types of failure mechanism were analyzed and combined to explain the Lamuajue landslide based on the features of the accumulation area. First, a shattering-sliding mechanism caused by earthquakes in zone A. Second, a sliding mechanism along the weak intercalation caused by gravity and water in zone B. Third, a shattering-ejection mechanism generated by earthquakes in zone C. The results provide a distinctive case for the study of gigantic landslides induced by earthquakes, which is very important for understanding and assessing ancient earthquakeinduced landslides.展开更多
A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalan...A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well a...Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.展开更多
Under the new regulatory requirements for nuclear power plants in Japan, which were enacted in response to the nuclear accident associated with the Great East Japan Earthquake Tsunami that occurred on 11 March 2011, i...Under the new regulatory requirements for nuclear power plants in Japan, which were enacted in response to the nuclear accident associated with the Great East Japan Earthquake Tsunami that occurred on 11 March 2011, it is a requirement to establish a site-specific "standard tsunami" based on numerical analysis considering non-seismic factors in addition to general seismic faults. It is necessary to establish a consistent evaluation scheme for estimation of tsunami height induced by submarine landslide, since a standard framework for evaluation has not yet been established even though several models for calculation have been proposed and applied in practice. In this study, we estimated the scale of submarine landslide from a literature survey and showed examples of tsunami height evaluation using multiple schemes. As a result of evaluation of tsunami height using three schemes, the Watts model, the KLS model, and the modified-KLS model, the result obtained by the KLS model was comparatively large for every case.展开更多
文摘In tectonically active mountain belts such as the Taiwan(Fig.1a),frequent landslides affect the stability of mountain slopes,and landslides favour river erosion of disrupted masses.In the climatic and geodynamic context of Taiwan with heavy rainfall,approximate typhoon frequency of 3 -5 per year,rapid uplift of~5-10 mm yr^(-1) and strong denudation rate.Landslides are among the most common earthquake induced secondary effects and are causing huge damage
基金financially supported by the National Natural Science Foundation of China (Grant No.41520104002)Key Research Program of Frontier Sciences,CAS (Grant No.QYZDY-SSWDQC006)+1 种基金International partnership program of Chinese Academy of Sciences (Grant No.131551KYSB20160002)financial support from the Opening Fund of State Key Laboratory of Hydraulics and Mountain River Engineering (SKHL1609)
文摘On August 8^(th), 2017, an Ms 7.0 magnitude earthquake occurred in Jiuzhaigou County, northern Sichuan Province, China. The Jiuzhaigou Valley World National Park was the most affected area due to the epicentre being located in the scenic area of the park. Understanding the distribution characteristics of landslides triggered by earthquakes to help protect the natural heritage sites in Jiuzhaigou Valley remains a scientific challenge. In this study, a relatively complete inventory of the coseismic landslides triggered by the earthquake was compiled through the interpretation of high-resolution images combined with a field investigation. The results indicate thatcoseismic landslides not only are concentrated in Rize Gulley, Danzu Gully and Zezhawa Gully in the study area but also occur in the front part of Shuzheng Gully along the road network(from the entrance of Jiuzhaigou Valley to Heye Village). The landslides predominantly occur on the east-and southeastfacing slopes in the study area, which is a result of the integrated action of the valley direction and fault movement direction. The back-slope effect and the slope structure caused the difference in coseismic landslide distribution within the three gullies(Danzu Gully, Rize Gully, and Zezhawa Gully) near the inferred fault. In addition, the topographic position index was used to analyse the impact of microlandforms on earthquake-triggered landslides by considering the effect of the slope angle. The study results reveal a higher concentration of landslides in the slope position class of the middle slope(30°-50°) in Jiuzhaigou Valley. These findings can provide scientific guidance for the protection of natural heritage sites and post-disaster reconstruction in Jiuzhaigou Valley.
基金the Chinese Academy of Sciences Presidents International Fellowship Initiative(Grant No.2015PEO23)External Cooperation Program of BIC,15 Chinese Academy of Sciences(Grant No.131551KYSB20150009)hundred talents program of Chinese Academy of Sciences(Su Lijun)for supporting for this research
文摘Nepal was hit by a 7.8 magnitude earthquake on 25^(th) April,2015.The main shock and many large aftershocks generated a large number of coseismic landslips in central Nepal.We have developed a landslide susceptibility map of the affected region based on the coseismic landslides collected from remotely sensed data and fieldwork,using bivariate statistical model with different landslide causative factors.From the investigation,it is observed that most of the coseismic landslides are independent of previous landslides.Out of 3,716 mapped landslides,we used 80% of them to develop a susceptibility map and the remaining 20% were taken for validating the model.A total of 11 different landslide-influencing parameters were considered.These include slope gradient,slope aspect,plan curvature,elevation,relative relief,Peak Ground Acceleration(PGA),distance from epicenters of the mainshock and major aftershocks,lithology,distance of the landslide from the fault,fold,and drainage line.The success rate of 87.66% and the prediction rate of86.87% indicate that the model is in good agreement between the developed susceptibility map and theexisting landslides data.PGA,lithology,slope angle and elevation have played a major role in triggering the coseismic mass movements.This susceptibility map can be used for relocating the people in the affected regions as well as for future land development.
基金supported by the Key Laboratory Program for Mountain Hazards and Earth Surface Process, CAS (Grant No. KLMHESP17-06)International Science Program-Silk Road Disaster Risk Reduction (Grant No. 131551KYSB20160002)+2 种基金Major International (Regional) Joint Research Project (Grant No.41520104002) Key Research Program of Frontier Sciences,CAS (Grant No. QYZDY-SSWDQC006) 135 Strategic Program of the Institute of Mountain Hazards and Environment, CAS, NO. SDS-135-1701
文摘Jiuzhaigou National Park, located in northwest plateau of Sichuan Province, is a UNESCO World Heritage Site, and one of the most popular scenic areas in China. On August 8, 2017, a Mw 6.5 earthquake occurred 5 km to the west of a major scenic area, causing 25 deaths and injuring 525, and the Park was seriously affected. The objective of this study was to explore the controls of seismogenic fault and topographic factors on the spatial patterns of these landslides. Immediately after the main shock, field survey, remote-sensing investigations, and statistical and spatial analysis were undertaken. At least 2212 earthquake-triggered landslides were identified, covering a total area of 11.8 km^2. Thesewere mainly shallow landslides and rock falls. Results demonstrated that landslides exhibited a close spatial correlation with seismogenic faults. More than 85% of the landslides occurred at 2200 to 3700 m elevations. The largest quantity of landslides was recorded in places with local topographic reliefs ranging from 200 to 500 m. Slopes in the range of ~20°-50° are the most susceptible to failure. Landslides occurred mostly on slopes facing east-northeast(ENE), east(E), east-southeast(ESE), and southeast(SE), which were nearly vertical to the orientation of the seismogenic fault slip. The back-slope direction and thin ridge amplification effects were documented. These results provide insights on the control of the spatial pattern of earthquake-triggered landslides modified by the synergetic effect of seismogenic faults and topography.
基金supported by State Key Fundamental Research Program (973) project (2008CB425802)the National natural Science Foundation of China (Grant No. 40801009)
文摘The Wenchuan earthquake on May 12,2008 caused numerous collapses,landslides,barrier lakes,and debris flows.Landslide susceptibility mapping is important for evaluation of environmental capacity and also as a guide for post-earthquake reconstruction.In this paper,a logistic regression model was developed within the framework of GIS to map landslide susceptibility.Qingchuan County,a heavily affected area,was selected for the study.Distribution of landslides was prepared by interpretation of multi-temporal and multi-resolution remote sensing images(ADS40 aerial imagery,SPOT5 imagery and TM imagery,etc.) and field surveys.The Certainly Factor method was used to find the influencial factors,indicating that lithologic groups,distance from major faults,slope angle,profile curvature,and altitude are the dominant factors influencing landslides.The weight of each factor was determined using a binomial logistic regression model.Landslide susceptibility mapping was based on spatial overlay analysis and divided into five classes.Major faults have the most significant impact,and landslides will occur most likely in areas near the faults.Onethird of the area has a high or very high susceptibility,located in the northeast,south and southwest,including 65.3% of all landslides coincident with the earthquake.The susceptibility map can reveal the likelihood of future failures,and it will be useful for planners during the rebuilding process and for future zoning issues.
基金financially supported by the Open Research Fund from the Key Laboratory of Mountain Hazards and Earth Surface Process (Chinese Academy of Sciences) (Grant No.KLMHESP-17-06)the Independent Research Fund from the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No.40100-00002219)
文摘The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of 19 km2 with a maximum width of 5-5 km and an estimated residual volume of 3 × 108 ma. The objectives of this study were to identify the characteristics and failure mechanism of this landslide. In this study, based on field investigations, aerial photography, and profile surveys, the boundary, lithology, structure of the strata, and characteristics of the landslide deposits were determined. A gently angled weak interlayer consisting of shale was the main factor contributing to the occurrence of the Lamuajue landslide. The deposition area can be divided into three zones: zone A is an avalanche deposition area mainly composed of blocks, fragments, and debris with diameters ranging from o.i m to 3 m; zone B is a residual integrated rock mass deposition area with large blocks, boulders and "fake bedrock"; and zone C is a deposition zone of limestone blocks and fragments. Three types of failure mechanism were analyzed and combined to explain the Lamuajue landslide based on the features of the accumulation area. First, a shattering-sliding mechanism caused by earthquakes in zone A. Second, a sliding mechanism along the weak intercalation caused by gravity and water in zone B. Third, a shattering-ejection mechanism generated by earthquakes in zone C. The results provide a distinctive case for the study of gigantic landslides induced by earthquakes, which is very important for understanding and assessing ancient earthquakeinduced landslides.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.
文摘Based on field investigations and indoor systematic research of the 1879 South Wudu M8.0 earthquake conducted in recent years, the magnitude, damage, seismic intensity, co-seismic fracture of the earthquake, as well as its seismogenic tectonics and preparation process, have been studied. The paper summarizes the results of studies on location of the earthquake’s macroscopic epicenter, magnitude and co-seismic fracture, with emphasis on the distribution range, type, extent and mechanism of its co-seismic fractures. The research reveals that, (1) the major part of the meizoseismal area of the South Wudu earthquake is located between Wudu and Wenxian in southern Gansu Province. It extends in a NEE direction, its shape is elliptical with the major axis about 70km long and the minor axis 30km. The macroscopic epicenter is located in the vicinity of Baoziba, in the east of the meizoseismal area; (2) three co-seismic fracture belts developed in the meizoseismal area, scattering northeastwards and converging southwestwards; (3) the major fracture belt extends from Baishuijiang at Hanan on the west, to the the bank areas of Bailongjiang river on the east, such as Gushuizi, Toufang and Daoqizi, etc.; (4) the co-seismic fractures consist of earthquake fissure, scarp, bulge, landslide, barrier lake and so on, among which landslides are the most obvious phenomenon; (5) according to the location, geometry and mechanism of the fracture, it is assumed that the co-seismic fracture zone of the South Wudu earthquake is the product of left-lateral strike-slip, associated with a dip-slip in the Hanan-Daoqizi-Maopola fault zone; (6) based on the size of the co-seismic fracture and the observed amount of displacement of the seismogenic fault of the South Wudu earthquake, the magnitude of this event is estimated to be M8.0.
文摘Under the new regulatory requirements for nuclear power plants in Japan, which were enacted in response to the nuclear accident associated with the Great East Japan Earthquake Tsunami that occurred on 11 March 2011, it is a requirement to establish a site-specific "standard tsunami" based on numerical analysis considering non-seismic factors in addition to general seismic faults. It is necessary to establish a consistent evaluation scheme for estimation of tsunami height induced by submarine landslide, since a standard framework for evaluation has not yet been established even though several models for calculation have been proposed and applied in practice. In this study, we estimated the scale of submarine landslide from a literature survey and showed examples of tsunami height evaluation using multiple schemes. As a result of evaluation of tsunami height using three schemes, the Watts model, the KLS model, and the modified-KLS model, the result obtained by the KLS model was comparatively large for every case.