In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the o...In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.展开更多
Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake fr...Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L< 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.展开更多
Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of ...Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.展开更多
In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displac...In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.展开更多
基金funded by the Earthquake Science and Technology Development Fund of GEA(Grant No.2016M02,2016Y02)the Earthquake Tracking Task of CEA(2017010221)+1 种基金the Fund of Science for Earthquake Resilience,CEA,(XH16038Y,XH14049)Grant of National Natural Science Foundation of China(51408567,41304048)
文摘In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.
基金sponsored by the regular project of earthquake monitoring and prediction in 2016(16C23ZX327)
文摘Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L< 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.
基金The research was sponsored by"Special Project of Emergency Response to the MS 6 .8 Bachu-Jiashi , Xinjiang Earthquake"of China Earthquake Administration
文摘Deformation patterns, shortening amounts and rates in the late Quaternary across the Kalpin thrust system have received tittle attention in the past. This paper attempts to discuss them, mainly in the eastern part of the thrust system by doing field investigation along the faults and folds, measuring geomorphic deformation, excavating trenches in several important sites where young alluvial fans were obviously displaced and dating young deposits of alluvial terraces. There are two types of deformation in the surface and near surface for the Kalpin thrust system in the late Quaternary. They are movement of thrust faults on lower angles and bending of young folds. Both kinds of deformation are shown by shortening and uplifting of young geomorphic surfaces. The surface ages of 3 stages are calculated by dating 20 examples using the TL method in the study area and comparing the results of our predecessors on the deposition and incision times of alluvial terraces in the Tianshan mountain which are 100ka B. P., 33 - 18ka B.P. and 6.6 - 8.2ka B.P. respectively for the large-scale deformed alluvial surfaces: T3, T2 and T1 in the Kalpin region. Then, 19 sets of shortening amounts and rates are obtained in 13 sites along 4 rows of anticlines in front of the Kalpin thrust system and Piqiang fold. The shortening amounts and rates show that there are two sections where deformation is stronger than others. The two sections consist of two arcs that are towards the south. The shortening rates near the top of arcs are 1.32mm/a in the west and 1.39mm/a in the east across the thrust system, respectively. In addition, deformation is stronger in the front rows than the rear ones for bifurcate folds.
基金sponsored by the Director Fund of Institute of Seismology,China Earthquake Administration(IS201526240)Data Sharing Special Project of the Ministry of Science and Technology,the People's Republic of China(IS20135065)
文摘In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.