In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve th...In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.展开更多
We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying ...We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying coefficients can adaptively estimate the coherent components. The smoothness of the polynomial coefficients is controlled by shaping regularization. The signal is coherent along the offset axis in a common midpoint (CMP) gather after normal moveout (NMO). We use NPF to estimate the effective signal and thereby to attenuate the random noise. For radial events-like noise such as ground roll, we first employ a radial trace (RT) transform to transform the data to the time-velocity domain. Then the NPF is used to estimate coherent noise in the RT domain. Finally, the coherent noise is adaptively subtracted from the noisy dataset. The proposed method can effectively estimate coherent noise with amplitude variations along the event and there is no need to propose that noise amplitude is constant. Results of synthetic and field data examples show that, compared with conventional methods such as stationary polynomial fitting and low cut filters, the proposed method can effectively suppress seismic noise and preserve the signals.展开更多
By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of th...By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of the data. The author summarized the seismic intensity attenuation laws in the Xinjiang region with the multiple regression fitting method. The intensity attenuation function of the elliptical model was provided and the fitting results in different periods and areas were compared. Finally, the intensity attenuation relationship in the Xinjiang region was obtained by the method of constraining the start and end of the attenuation curves.展开更多
Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematica...Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.展开更多
A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is in...A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.展开更多
基金Research supported by the 863 Program of China(No.2012AA09A20103)the National Natural Science Foundation of China(No.41274119,No.41174080,and No.41004041)
文摘In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional(2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variableamplitude polynomial fitting along the direction of the dip to improve the adaptive structureoriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
基金supported by the National Basic Research Program of China (973 program, grant 2007CB209606) the National High Technology Research and Development Program of China (863 program, grant 2006AA09A102-09)
文摘We propose a novel method for seismic noise attenuation by applying nonstationary polynomial fitting (NPF), which can estimate coherent components with amplitude variation along the event. The NPF with time-varying coefficients can adaptively estimate the coherent components. The smoothness of the polynomial coefficients is controlled by shaping regularization. The signal is coherent along the offset axis in a common midpoint (CMP) gather after normal moveout (NMO). We use NPF to estimate the effective signal and thereby to attenuate the random noise. For radial events-like noise such as ground roll, we first employ a radial trace (RT) transform to transform the data to the time-velocity domain. Then the NPF is used to estimate coherent noise in the RT domain. Finally, the coherent noise is adaptively subtracted from the noisy dataset. The proposed method can effectively estimate coherent noise with amplitude variations along the event and there is no need to propose that noise amplitude is constant. Results of synthetic and field data examples show that, compared with conventional methods such as stationary polynomial fitting and low cut filters, the proposed method can effectively suppress seismic noise and preserve the signals.
基金funded by the project of Xinjiang Historical Earthquake Disaster Data Analysis ( CEA_EDEM-201016)
文摘By using the existing historical earthquake investigation data in Xinjiang,this paper obtained the envelope curves of isoseismal maps of 103 destructive earthquakes occurring from 1716 to 2010 after digitization of the data. The author summarized the seismic intensity attenuation laws in the Xinjiang region with the multiple regression fitting method. The intensity attenuation function of the elliptical model was provided and the fitting results in different periods and areas were compared. Finally, the intensity attenuation relationship in the Xinjiang region was obtained by the method of constraining the start and end of the attenuation curves.
文摘Cooperative inversion for petroleum reservoir characterization produces an Earth model that fits all available geological, geophysical and reservoir production data to within acceptable error criteria. The mathematical formulation for the inversion requires an appropriate modeling description of both seismic wave propagation and reservoir fluid flow. The inversion requires the minimization of an objective function which is the weighted sum of model misfits for both geophysical and production data. While the complete automation of cooperative inversion may be unrealistic or intractable, geophysical data can provide useful information for enhancing heavy oil production. A methodology is given to demonstrate possible cooperative inversion application in heavy oil reservoirs.
文摘A new construction method of pile foundation in composite ground, in which, prior to installing piles, the ground is improved around the heads of the piles in soft ground or ground subject to liquefaction, which is introduced in this paper. This construction method uses a combination of pile foundation construction together with common ground improvement methods, including deep mixing, preloading and sand compaction piling, and it is referred to as the composite ground pile method. Since an artificial ground with relatively high rigidity comparing with that of the original ground was formed around the pile in this method, and the seismic performance has not been made clear, thus the seismic performance of piles in composite ground was systematically analyzed through a series of centrifuge model tests and numerical analyses by using dynamic nonlinear finite element method, and a verification method for the seismic performance of piles in composite ground was proposed on the basis of the experimental and numerical results.