期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
油气敏感频率段极值能量和因子及其在渤海油田油气检测中的应用 被引量:4
1
作者 王波 夏同星 +1 位作者 明君 郭帅 《物探与化探》 CAS CSCD 北大核心 2018年第5期1026-1032,共7页
由于地层原油和地层水的物理性质差异小,砂泥岩物性变化影响地震反射,地震资料存在噪声等多种因素的影响,利用地震资料识别含油砂体困难大,多解性强,成功应用案例少。虽然单个含油砂体产生的地震差异小,但是油气通常在地下某一空间范围... 由于地层原油和地层水的物理性质差异小,砂泥岩物性变化影响地震反射,地震资料存在噪声等多种因素的影响,利用地震资料识别含油砂体困难大,多解性强,成功应用案例少。虽然单个含油砂体产生的地震差异小,但是油气通常在地下某一空间范围内富集,多个油气层产生的地震响应的差异总和可以被明显观测到。笔者提出了油气敏感频率段极值能量和因子进行油气检测,首先利用可变因子广义S变换进行地震资料分频处理,然后分析能够突出油水性质差异的地震频率范围并确定能量阈值,计算油气敏感频率段极值能量。对于高丰度含油气区,纵向上发育多套油气层,通过纵向上极值能量进行累加可以进一步突出油气信息,因此,极值能量和油气检测因子可有效预测高丰度油气分布区。模型数据测试证明了本文方法是有效的,将本文方法应用于渤海多个油田,油气检测的结果与钻井获得的油气分布范围吻合良好。该方法指导了多口井的成功钻探,获得了良好的应用效果。 展开更多
关键词 地震油气检测 油气指示因子 可变因子广义S变换 极值能量和 敏感频率分析 高丰度含油气 渤海油田
下载PDF
Application of 3D AVO Interpretation Technique to Lithological Reservoir in the Hongze Area
2
作者 谢占安 《Applied Geophysics》 SCIE CSCD 2005年第3期168-174,F0003,共8页
In the Hongze Area, the reservoirs vary rapidly laterally and are controlled by many factors, such as structure, lithology, oil source, and so on. S-wave well log curves are calculated from an equation derived from mu... In the Hongze Area, the reservoirs vary rapidly laterally and are controlled by many factors, such as structure, lithology, oil source, and so on. S-wave well log curves are calculated from an equation derived from multiple-attribute regression analysis of RT, DT, GR, and DEN logs. Representative P-and S-wave velocities and Poisson's ratio are statistically computed for oil and water bearing reservoir rock, shale, and calcareous shale in each well. The averaged values are used for AVO forward modeling. Comparing the modeling results with actual seismic data limit the possible AVO interpretations. Well and seismic data are used to calibrate inverted P-wave, S-wave, Poisson's ratio, and AVO gradient attribute data sets. AVO gradient data is used for lithofacies interpretation, P-wave data is used for acoustic impedance inversion, S-wave data is used for elastic impedance, and Poisson's ratio data is used for detecting oil and gas. The reservoir and hydrocarbon detections are carried out sequentially. We demonstrate that the AVO attributes method can efficiently predict reservoir and hydrocarbon potential. 展开更多
关键词 S-WAVE Poisson's ratio GRADIENT modeling attribute calibration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部