Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders t...Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.展开更多
The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the s...The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.展开更多
基金supported by National 863 Program of China(Grant No.2006AA09A101-0102)
文摘Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering.
基金sponsored by the Natural Science Foundation of Shandong Province (Y2007E09)Joint Earthquake Science Foundation (C08028)Special Application Research of Digital Seismic Wave Data ,Shangdong,China
文摘The Quality factor is the parameter that can be used to describe the energy attenuation on seismic wave. In theory, we can obtain the relationship between the change of the coda wave quality factor with time and the strong earthquake preparation process on the basis of the quality factor of a coda wave in a same ray path. However, in reality the coda wave quality factor measured by different seismic coda waves corresponds to different seismic wave ray paths. The change of the quality factor with time is related to non-elastic characteristics of the medium and the volume of scattering ellipsoid constrained by scattered wave phase fronts, besides the change of regional stress field. This paper discusses the relationship between quality factor, epicenter distance and different lapse time, and then discusses the relationship between quality factor and frequency. Furthermore the determination method of the coda wave quality factor is put forward. The improved determination method of the quality factor, which removes the influence of different earthquakes or propagation depth of scattered waves, may increase measurement precision, thus information pertaining to abnormal changes in quality factor and the relationship between the quality factor and earthquake preparation process can be acquired.