Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-ha...Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake...Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.展开更多
Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms tr...Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years.Slope debris flows(as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks.Based on field investigations and measurements of 19 slope debris flows,their main characteristics and potential mitigation strategies were studied.High rainfall intensity is the main triggering factor.Critical rainfall intensities for simultaneous occurrence of single,several and numerous slope debris flow events were 20 mm/day,30mm/day,and 90 mm/day,respectively.Field investigations also revealed that slope debris flows consist of high concentrations of cobbles,boulders and gravel.They are two-phase debris flows.The liquid phase plays the role of lubrication instead of transporting medium.Solid particles collide with each other and consume a lot of energy.The velocities of slope debris flows are very low,and their transport distances are only several tens of meters.Slope debris flows may be controlled by construction of drainage systems and by reforestation.展开更多
The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debri...The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.展开更多
Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics...Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics. This paper was to propose a debris flow formation process and explore the permeability characteristics and critical hydrodynamic conditions of the loose deposits triggered by the earthquake. The Guo Juanyan gully (31005'27" N to 31005'46" N, 103036'58" E to 103037'09" E) in Du Jiangyan City, located in the meizoseismal areas of the Wenchuan earthquake, was chosen as the study area and the disaster-prone environment was analyzed. The formation process of the debris flow was first proposed using a stability analysis, and then, the permeability characteristics of loose deposits were determined via in situ permeability experiments. Finally, the critical 1 h rainfall was simulated through a distributed hydrological model and verified by field observations. The formation process of debris flow could be divided into three stages based on the relationship between the hydrodynamic force and loose deposit resistance. The critical 1 h rainfall amounts under three antecedent moisture conditions (I-dry, Ⅱ-normal and Ⅲ-wet) were 52 mm/h, 43 mm/h and 34 mm/h, respectively. This study proposed a debris flow formation process in the meizoseismal areas of the Wenchuan earthquake based on the stability analysis and defined the rainfall threshold for debris flow early warning at the local level, which is significant for debris flow mitigation and risk management.展开更多
Debris flows are among the most common geological disasters in China,and have been particularly frequent in Sichuan Province since the Wenchuan earthquake on 12 May 2008.The construction of debris flow drainage channe...Debris flows are among the most common geological disasters in China,and have been particularly frequent in Sichuan Province since the Wenchuan earthquake on 12 May 2008.The construction of debris flow drainage channels is a countermeasure used to distribute debris flow fans,and these channels play a critical role in the mitigation and prevention of damage resulting from debris flows.Under field conditions,the useful life of drainage channels can be greatly shortened as a result of strong abrasions to the drainage structure caused by the debris flow.Field investigations have shown that the types of damage to drainage channels include(a) erosion caused by hyper-concentrated silt flow,(b) impact fractures and foundation scour at the groundsills of the drainage channel,(c) destruction of the drainage channel outlet,and(d) destruction of the drainage channel caused by debris flow abrasion.In addition,based on the destruction of the drainage channel during the debris flow drainage process,a new type of drainage channel with energy dissipation components was proposed and applied in a steep,narrow gully for debris flow mitigation.Moreover,design and engineering repair recommendations for drainage channels are provided as a reference for repairing the damage to the channel.The results can provide an important reference for the effective repair and optimal design of drainage channels.展开更多
In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes....In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.展开更多
基金supported by the National Key Fundamental Research Program of China (973) (2008CB425802)The Project Group of Knowledge Innovation Program of Chinese Academy Sciences (KZCX2-YW-Q03-5)
文摘Field investigations and aerial photography after the earthquake of May 12, 2008 show a large number of geo-hazards in the zone of extreme earthquake effects. In particular, landslides and debris flows, the geo-hazards that most threaten post-disaster reconstruction, are widely distributed. We describe the characteristics of these geo-hazards in Beichuan County using high-resolution remote sensing of landslide distribution, and the relationships between the area and volume of landslides and the peak-discharges of debris flows both pre- and post-earthquake. The results show: 1) The concentration (defined as the number of landslide sources per unit area: Lc) of earthquake- triggered landslides is inversely correlated with distance from the earthquake (DF) fault. The relationship is described by the following equation: Lc = 3.2264exp(-0.0831DF) (R2 = 0.9246); 2) 87 % of the earthquake-triggered landslides were less than 15× 10^4 m2 in area, and these accounted only for 5o% of the total area; 84% of the landslide volumes were less than 60×10^4 m3, and these accounted only for 50% of the total volume. The probability densities of the area and volume distributions are correlated: landslide abundance increases with landslide area and volume up to maximum values of 5 ×10^4m2 and 30 ×10^4 m3, respectively, and then decreases exponentially. 3) The area (AL) and volume (VL) of earthquake-triggered landslides are correlated as described with the following equation: VL=6.5138AL1.0227 (R2 = 0.9231); 4)Characteristics of the debris flows changed after the earthquake because of the large amount of landslide material deposited in the gullies. Consequently, debris flow peak-discharge increased following the earthquake as described with the following equation: Vpost = 0.8421Vprel-0972 (R2 = 0.9821) (Vpre is the peak discharge ofpre-earthquake flows and the Vpost is the peak discharge of post-earthquake flows). We obtained the distribution of the landslides based on the above analyses, as well as the magnitude of both the landslides and the post-earthquake debris flows. The results can be useful for guiding post-disaster reconstruction and recovery efforts, and for the future mitigation of these geo-hazards. However, the equations presented are not recommended for use in site-specific designs. Rather, we recommend their use for mapping regional seismic landslide hazards or for the preliminary, rapid screening of sites.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金financially supported by the Scholarship of Knowledge Innovation Project, Chinese Academy of Sciences (KZCX2-YW-332)
文摘Critical rainfall assessment is a very important tool for hazard management of torrents and debris flows in mountainous areas. The Wenchuan Earthquake 2008 caused huge casualties and property damages in the earthquake-stricken area,which also generated large quantities of loose solid materials and increased occurrence probabilities of debris flows. There is an urgent need to quantify the critical rainfall distribution in the area so that better hazard management could be planned and if real time rainfall forecast is available,torrent and debris flow early-warning could be issued in advance. This study is based on 49-year observations (1954-2003) of up to 678 torrent and debris flow events. Detailed contour maps of 1 hour and 24 hour critical rainfalls have been generated (Due to the data limitation,there was insufficient 10 minute critical rainfall to make its contour map). Generally,the contour maps from 1 hour and 24 hours have similar patterns. Three zones with low,medium and high critical rainfalls have been identified. The characteristics of the critical rainfall zones are linked with the local vegetation cover and land forms. Further studies and observations are needed to validate the finding and improve the contour maps.
基金supported by the Ministry of Science and Technology of China (2008CB425803)the State Key Laboratory of Hydroscience and Engineering at Tsinghua University (50823005,2009-ZY-2)
文摘Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years.Slope debris flows(as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks.Based on field investigations and measurements of 19 slope debris flows,their main characteristics and potential mitigation strategies were studied.High rainfall intensity is the main triggering factor.Critical rainfall intensities for simultaneous occurrence of single,several and numerous slope debris flow events were 20 mm/day,30mm/day,and 90 mm/day,respectively.Field investigations also revealed that slope debris flows consist of high concentrations of cobbles,boulders and gravel.They are two-phase debris flows.The liquid phase plays the role of lubrication instead of transporting medium.Solid particles collide with each other and consume a lot of energy.The velocities of slope debris flows are very low,and their transport distances are only several tens of meters.Slope debris flows may be controlled by construction of drainage systems and by reforestation.
基金supported by Research Fund of the State Key Laboratory of Geo-Hazard Prevention (Grant SKLGP2009Z004)the National Basic Research Program of China (also called 973 Program) (Grant No. 2011CB409903)
文摘The 5.12 Wenchuan Earthquake and the subsequent rainstorms induced a large number of landslides, which later were transformed into debris flows. To evaluate the effect of the earthquake on the sediment supply of debris flows, eight debris flow basins near Beichuan City, Sichuan Province, China were chosen as the study area. The area variations of the debris flow source after the Wenchuan Earthquake and the subsequent rainstorm are analyzed and discussed in this paper. Interpretations of aerial photographs (after the 5.12 Wenchuan Earthquake) and SPOT5 images (after the rainstorm event of September 24, 2008) as well as field investigations were compared to identify the transformation of landslide surface in the study area, indicating that the landslide area in the eight debris flow basins significantly increased. The loose sediment area on the channel bed increased after the rainstorm event. In order to estimate the relationship of the landslide area with the rainfall intensity in different return periods, a model proposed by Uchihugi was adopted. Results show that new landslide area induced by heavy rainfall with 50-year and 100-year return period will be 0.87 km2 and 1.67 km2, respectively. The study results show the Wenchuan earthquake had particular influences on subsequent rainfall-induced debris flow occurrence.
基金Financial support was provided by the international cooperation project of the Ministry of Science and Technology (Grant No.2013DFA21720)the Key Laboratory of Mountain Hazards and Earth Surface Processes independent project fundingthe National Natural Science Foundation (Grant No. 41372331)
文摘Abstract: The Wenchuan earthquake generated strong surface disturbances and triggered a large number of loose deposits, resulting in the disaster- prone environment with special watershed hydrological characteristics. This paper was to propose a debris flow formation process and explore the permeability characteristics and critical hydrodynamic conditions of the loose deposits triggered by the earthquake. The Guo Juanyan gully (31005'27" N to 31005'46" N, 103036'58" E to 103037'09" E) in Du Jiangyan City, located in the meizoseismal areas of the Wenchuan earthquake, was chosen as the study area and the disaster-prone environment was analyzed. The formation process of the debris flow was first proposed using a stability analysis, and then, the permeability characteristics of loose deposits were determined via in situ permeability experiments. Finally, the critical 1 h rainfall was simulated through a distributed hydrological model and verified by field observations. The formation process of debris flow could be divided into three stages based on the relationship between the hydrodynamic force and loose deposit resistance. The critical 1 h rainfall amounts under three antecedent moisture conditions (I-dry, Ⅱ-normal and Ⅲ-wet) were 52 mm/h, 43 mm/h and 34 mm/h, respectively. This study proposed a debris flow formation process in the meizoseismal areas of the Wenchuan earthquake based on the stability analysis and defined the rainfall threshold for debris flow early warning at the local level, which is significant for debris flow mitigation and risk management.
基金sponsored by the Key Deployment Project of the Chinese Academy of Sciences (KZZD-EW-05-01)the Natural Science Foundation of China (Grant No. 41302283)+1 种基金the Young Scientists Research Fund of the Institute of Mountain Hazards and Environment, CAS (SDSQN-1305)the Young Science Foundation of Key Laboratory of Mountain Hazards and Earth Surface Processes, CAS
文摘Debris flows are among the most common geological disasters in China,and have been particularly frequent in Sichuan Province since the Wenchuan earthquake on 12 May 2008.The construction of debris flow drainage channels is a countermeasure used to distribute debris flow fans,and these channels play a critical role in the mitigation and prevention of damage resulting from debris flows.Under field conditions,the useful life of drainage channels can be greatly shortened as a result of strong abrasions to the drainage structure caused by the debris flow.Field investigations have shown that the types of damage to drainage channels include(a) erosion caused by hyper-concentrated silt flow,(b) impact fractures and foundation scour at the groundsills of the drainage channel,(c) destruction of the drainage channel outlet,and(d) destruction of the drainage channel caused by debris flow abrasion.In addition,based on the destruction of the drainage channel during the debris flow drainage process,a new type of drainage channel with energy dissipation components was proposed and applied in a steep,narrow gully for debris flow mitigation.Moreover,design and engineering repair recommendations for drainage channels are provided as a reference for repairing the damage to the channel.The results can provide an important reference for the effective repair and optimal design of drainage channels.
基金financially supported by the National Natural Science Foundation of China (Grant No.41572302)the Funds for Creative Research Groups of China (Grant No.41521002)
文摘In the Wenchuan Earthquake area,many co-seismic landslides formed blocking-dams in debris flow channels. This blocking and bursting of landslide dams amplifies the debris flow scale and results in severe catastrophes. The catastrophic debris flow that occurred in Qipan gully(Wenchuan,Southwest China) on July 11,2013 was caused by intense rainfall and upstream cascading bursting of landslide dams. To gain an understanding of the processes of dam bursting and subsequent debris flow scale amplification effect,we attempted to estimate the bursting debris flow peak discharges along the main gully and analyzed the scale amplification process. The results showed that the antecedent and triggering rainfalls for 11 July debris flow event were 88.0 mm and 21.6 mm,respectively. The event highlights the fact that lower rainfall intensity can trigger debris flows after the earthquake. Calculations of the debris flow peak discharge showed that the peak discharges after the dams-bursting were 1.17–1.69 times greater than the upstream peak discharge. The peak discharge at the gully outlet reached 2553 m^3/s which was amplified by 4.76 times in comparison with the initial peak discharge in the upstream. To mitigate debris flow disasters,a new drainage channel with a trapezoidal V-shaped cross section was proposed. The characteristic lengths(h1 and h2) under optimal hydraulic conditions were calculated as 4.50 m and 0.90 m,respectively.