The study found that strong magnetic anomalies repeatedly took place before big earthquakes. Based on geomagnetic record analysis results,we discussed a possible pattern of the magnetic anomalies prior to earthquake. ...The study found that strong magnetic anomalies repeatedly took place before big earthquakes. Based on geomagnetic record analysis results,we discussed a possible pattern of the magnetic anomalies prior to earthquake. In meizoseismal area or epicenter,in a time period of 36 h to about 10 min before earthquake,the exceptional big geomagnetic change increases with the magnitude of earthquake. We calculated that,in a place of 1 km from the epicenter,the magnetic anomaly before destructive earthquakes of Ms 6~9 can reach to 102~104 nT(the magnitude of earth magnetic field is 104 nT) ,rather than the magnitude of 10 nT from seismomagnetic effect theories since 1960s. From this we speculated the abnormal magnetic ULF near epicenter before earthquake seems to be an "intermittent magnetic eruption". Accordingly,we proposed that geomagnetic induction earthquake alarm can be a new pre-warning method to surmount hardship in solving the puzzledom of earthquake imminent prediction.展开更多
By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characterist...By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characteristic of non-stationary short-term seismic anomalies were analyzed as well as prediction efficiency of modulated small earthquakes before a strong earthquake. Besides,small earthquake modulation ratios near the region of the epicenter were calculated and sorted by time. The results indicated that there were significant effects using the modulated earthquake method to predict earthquakes greater than MS6. 0 in a short time. Before the MS8. 0 Wenchuan earthquake,there were obvious short-term precursory seismicity gap patterns of modulated small earthquakes.展开更多
文摘The study found that strong magnetic anomalies repeatedly took place before big earthquakes. Based on geomagnetic record analysis results,we discussed a possible pattern of the magnetic anomalies prior to earthquake. In meizoseismal area or epicenter,in a time period of 36 h to about 10 min before earthquake,the exceptional big geomagnetic change increases with the magnitude of earthquake. We calculated that,in a place of 1 km from the epicenter,the magnetic anomaly before destructive earthquakes of Ms 6~9 can reach to 102~104 nT(the magnitude of earth magnetic field is 104 nT) ,rather than the magnitude of 10 nT from seismomagnetic effect theories since 1960s. From this we speculated the abnormal magnetic ULF near epicenter before earthquake seems to be an "intermittent magnetic eruption". Accordingly,we proposed that geomagnetic induction earthquake alarm can be a new pre-warning method to surmount hardship in solving the puzzledom of earthquake imminent prediction.
基金supported by the National Basic ResearchProgram (973 Program),entitled Global deep geophysical field and the relation between its geodynamic effect and Wenchuan Earthquake
文摘By scanning modulated or un-modulated earthquakes spatio-temporally in the region of Sichuan-Yunnan,short-term non-stationary seismic precursory patterns were extracted with significant difference and the characteristic of non-stationary short-term seismic anomalies were analyzed as well as prediction efficiency of modulated small earthquakes before a strong earthquake. Besides,small earthquake modulation ratios near the region of the epicenter were calculated and sorted by time. The results indicated that there were significant effects using the modulated earthquake method to predict earthquakes greater than MS6. 0 in a short time. Before the MS8. 0 Wenchuan earthquake,there were obvious short-term precursory seismicity gap patterns of modulated small earthquakes.