For the purpose of having a better understanding of failure mechanisms of rock fracturing in mines, the equivalent point source models of tensile, shear and explosive seismic events were established, and the relations...For the purpose of having a better understanding of failure mechanisms of rock fracturing in mines, the equivalent point source models of tensile, shear and explosive seismic events were established, and the relationship between far-field seismic displacements of the waves and the corresponding equivalent forces were analyzed as well. Based on the results of a microseismic monitoring carried out in the mining progress of 9202 working face under the upper remnant coal pillar in Sanhejian Mine, the waveform features of the seismic events associated with different failure modes were further analyzed. The results show that the signals corresponding to different failure mechanisms have different radiation patterns of the seismic displacements, and different characteristics in waveform features, such as dominant frequency, energy released, the ratio of S- to P-wave energy, and so on. In addition, the rock burst happened in the high stress zone is mainly the result of the strong shear fracturing in the mining process. The results of this study have significantly improved the understanding of the characteristics of the failures associated with underground mining, and will greatly benefit the prevention and control of rock burst hazards in burst-prone mines.展开更多
Nested Newmark model(NNM) is a conceptual framework to assessing post-earthquake movements including dispersed shear movements. The original NNM omits that the tensile stresses would be encountered in slopes induced b...Nested Newmark model(NNM) is a conceptual framework to assessing post-earthquake movements including dispersed shear movements. The original NNM omits that the tensile stresses would be encountered in slopes induced by earthquakes. The purpose of this study is to introduce the tensile strength cut-off and the relevant failure mechanism into NNM and conduct the limit analysis to determine the seismic displacement. Parametric studies are carried out to further investigate the influence of the tensile strength and input ground motions on permanent displacement. Neglecting the tensile strength can underestimate the permanent displacements of slopes. As the peak acceleration increases, the underestimation becomes more significant. With the reduction of tensile strength, much larger deformation occurs next to the slope crest. Although the present results are limited to an example, the method is of value in practice to predict the post-earthquake profile of slope.展开更多
Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment...Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.展开更多
By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wen...By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wenchuan MS8. 0 earthquake occurred in 2008. Compared to the achievements of field surveying along the surface rupture zone,we found that our computational results are comparable to the real displacement variation trend. Furthermore,the computational results indicated that the surface displacement fields vary with the distance from the fault,and the vertical displacement fields show strong inhomogeneity,in which larger displacement is focused on the ends of the fault. However, in contrast to the vertical displacement,the horizontal displacement shows relative uniformity in space.展开更多
On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake ge...On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.展开更多
Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi ...Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi Volcano Observatory(TVO) in recent years are analyzed.The authors discussed the ability for the Changbaishan volcanic seismic monitoring and active level of Changbaishan volcano in recent years based on the fundamental monitoring results.The results show that Changbaishan volcano has experienced an unrest episode from 2002 to 2005,but its active level recovers to the background now.展开更多
It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in ...It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.展开更多
The seismic behavior of masonry bell-towers located in Corfu, Greece, is considered since constructions of this kind are particularly vulnerable to seismic loadings. Dynamics analyses for different total heights of Co...The seismic behavior of masonry bell-towers located in Corfu, Greece, is considered since constructions of this kind are particularly vulnerable to seismic loadings. Dynamics analyses for different total heights of Corfu bell-towers and according to the seismic data of this region are carried out. A diagram of displacements is determined. The impact of the percentages of damping in the distribution of displacements is examined.展开更多
This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is hi...This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control展开更多
After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results...After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.展开更多
The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grid...The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grids. The rupture characteristics of the Yangjiang earthquake sequence show a conjugated distribution in NW and NE directions. The major distribution trends NE and dips NE with an angle of 30^o and a length of 30km,and the minor distribution trends NW and dips SE with an angle of 30^o and a length of 20km. The focal depth is 5km - 15km. The distribution of the Enping earthquake sequence,which is not far from Yangjiang,is NW-trending. The relationship between hypocenter distribution and geological structure is discussed.展开更多
In order to give the reasonable width of seismic gaps to prevent the structural pounding during ground motions,the maximum relative displacement of adjacent structures is studied in this paper.The factors that may hav...In order to give the reasonable width of seismic gaps to prevent the structural pounding during ground motions,the maximum relative displacement of adjacent structures is studied in this paper.The factors that may have effects on the maximum relative displacement are discussed.As for multi-degree-of-freedom(MDOF) systems,they can be equivalent to single-degree-of-freedom(SDOF) systems with the influences of high modes neglected.The results show that the period ratio,height ratio and peak ground acceleration are the main factors that have great effects on the maximum relative displacement of adjacent structures.The maximum relative displacement of MDOF systems can be obtained from calculating the maximum relative displacement of the equivalent SDOF systems.展开更多
The paper set up 3D solid overall superstructure model of Foundation and Box foundation on Rock Slope Subgrade base using the ABAQUS, and the establish the infinite element boundary, superstructure displacement of Box...The paper set up 3D solid overall superstructure model of Foundation and Box foundation on Rock Slope Subgrade base using the ABAQUS, and the establish the infinite element boundary, superstructure displacement of Box foundation and foundation at Rock Slope Subgrade was studied by inputting different direction of earthquake response. The results show that, for the mountain frame structure, influence on the horizontal displacement of the vertical under the action of alone big earthquake, and vertical seismic action on horizontal displacement effect is smaller by mutual function of horizontal and vertical seismic, basically is same as response under the action of horizontal earthquake alone; for step shaped box foundation, the change trend of mutual function of horizontal and vertical earthquake was the complete opposite of the maximum story drift each layer under the one-way horizontal earthquake, which indicate the presence of vertical earthquake wave effect on the box foundation displacement cannot be ignored.展开更多
In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences o...In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.展开更多
Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of ...Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.展开更多
Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south and Eurasian plate to the north. Several regional ear...Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south and Eurasian plate to the north. Several regional earthquakes have been strongly felt and caused damages in and around Tabriz during history. For example, the magnitude 7 to 7.7 Tabriz earthquake in 1780, which is the most strongest experienced one in Lesser Caucasus and east of Turkey and caused severe damage in Azerbaijan territory including Tabriz City. The urban area of Tabriz City lies on Miocene to Quaternary soft sediments (clays, sands, silts, and gravels.) resting on an old Tertiary basement. Previous studies have shown that the thickness of such soft sediments could largely influence the site response in case of an important regional earthquake. The accurate information about historical earthquakes and new faulting is an important tool for viewing the active tectonic and analyzing the earthquake risk and seismic migration. Historical records of earthquakes in Tabriz based on macro and micro seismic observations cover period of 1,000 to 1,400 years. Our study aims at mapping the seismic response of a pilot zone of Tabriz for different earthquake scenarios, a simple but robust.展开更多
In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of...In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of buildings. Their design heavily relies on numerical simulations to model the influence of the energy dissipation devices. The modeling of friction forces must be accurate for realistic simulation of the influence of these devices. In state-of-the-practice, the hysteretic behavior of friction devices has been typically modeled with Coulomb friction having a constant coefficient of friction. However, the basic laws for typical sliding materials and experimental investigations show non-linear relationship between friction and sliding velocity, which includes stiction and Stribeck effect. The influence of stiction and Stribeck effect may be significant and can not be ignored in simulating the dynamic responses of structures with friction-based energy dissipation devices. In this paper the optimal performance of dry friction device in shear-frame buildings when subjected to earthquake ground motions has been investigated. The focus of this paper is on the optimal minimization of response of the shear-frame building. Since buildings with friction devices behave in a highly nonlinear manner, nonlinear response-history analysis considering comprehensive sliding friction models has been carried out. The performance has also been evaluated using the various response measures: the maximum absolute acceleration, the maximum base shear, and the maximum inter-story drift. Different performance indices have been used to quantify the influence of the device properties.展开更多
Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic e...Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic earthquakes,etc.Constrained by GPS velocity field,the slip rates of these fault segments in depth were inversed using the 3-D half-space elastic dislocation model.As not all of the recurrence periods and co-seismic displacements of characteristic earthquakes are known,we selected the fault segments with these two parameters known and calculated the accumulation rate of average co-seismic displacement,which shows the faults' slip rate in seismogenic layer.Then,the slip rate in depth was compared with that in seismogenic layer,the relationship between them was obtained,and this relationship was used to get the recurrence periods and co-seismic displacements of all fault segments.After the studies above,we calculated the co-seismic deformation field of all the earthquakes larger than M s 6.8 from AD 1700 one by one and inversed the potential displacement in the co-seismic deformation field.Then,we divided the potential displacement by the slip rate from GPS inversion to get the influences of these fault segments,added the influences into the elapsed time of the characteristic earthquakes,and obtained the earthquake hazard degree of all the segments we studied in the form of the ratio of elapsed time to recurrence period;so,we name the ratio as the Impending Earthquake Risk (IER).Historical earthquake cases show that the fault segment is in safety when the IER is less than 1 but in danger after the IER becomes larger than 1.In 2009,the IER is larger than 1 on the following segments,1.35 on the Tagong segment of Xianshuihe fault,1 on the Menggu-Dongchuan segment,1.04 on the Dongchuan-Xundian segment,and 1.09 on the Yiliang-Chengjiang segment of Xiaojiang fault.展开更多
Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In t...Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface displacements by exploiting a single InSAR pair, which is called multi-aperture InSAR (MAI) technology.We study the effects of baseline errors and the ionosphere on MAI technology and develop a directional filter and interpolator to minimize the ionospheric effects.A PALSAR image pair covering the 2010 Yushu earthquake is used to estimate the 2-D displacement fields of the earthquake using the MAI approach.The experimental results show that MAI is superior to conventional Offset-Tracking and therefore has great potential in co-seismic displacement measurement and source parameter inversion.展开更多
基金Projects 50474068 supported by the National Natural Science Foundation of China2005CB221504 by the National Basic Research Program of China+2 种基金2006BAK04B02 and 2006BAK04B06 by the National Eleventh Five-Year Key Science & Technology Project[2007]3020 by the State Scholarship Fund of China Scholarship Councilprovided by the National Basic Research Program of China (2005CB221501)
文摘For the purpose of having a better understanding of failure mechanisms of rock fracturing in mines, the equivalent point source models of tensile, shear and explosive seismic events were established, and the relationship between far-field seismic displacements of the waves and the corresponding equivalent forces were analyzed as well. Based on the results of a microseismic monitoring carried out in the mining progress of 9202 working face under the upper remnant coal pillar in Sanhejian Mine, the waveform features of the seismic events associated with different failure modes were further analyzed. The results show that the signals corresponding to different failure mechanisms have different radiation patterns of the seismic displacements, and different characteristics in waveform features, such as dominant frequency, energy released, the ratio of S- to P-wave energy, and so on. In addition, the rock burst happened in the high stress zone is mainly the result of the strong shear fracturing in the mining process. The results of this study have significantly improved the understanding of the characteristics of the failures associated with underground mining, and will greatly benefit the prevention and control of rock burst hazards in burst-prone mines.
基金Projects(41630638,51878248)supported by the National Natural Science Foundation of China
文摘Nested Newmark model(NNM) is a conceptual framework to assessing post-earthquake movements including dispersed shear movements. The original NNM omits that the tensile stresses would be encountered in slopes induced by earthquakes. The purpose of this study is to introduce the tensile strength cut-off and the relevant failure mechanism into NNM and conduct the limit analysis to determine the seismic displacement. Parametric studies are carried out to further investigate the influence of the tensile strength and input ground motions on permanent displacement. Neglecting the tensile strength can underestimate the permanent displacements of slopes. As the peak acceleration increases, the underestimation becomes more significant. With the reduction of tensile strength, much larger deformation occurs next to the slope crest. Although the present results are limited to an example, the method is of value in practice to predict the post-earthquake profile of slope.
文摘Line structures such as pipelines that cross active faults should be designed to retain leak-tightness if the design displacement (Ddesign) occurs. Principal approaches to the Ddesign and rupture kinematics assessment are described. They are based on relationships between earthquake magnitude, rupture length and displacement, and on the detailed field data on a specific fault that crosses the pipeline route. Since the future offset at the crossing may exceed the design value, the probability of a displacement occurrence where the safety of the structure can not be ensured should be estimated. Assessment method on such event probability is described and exemplified through active fault studies carried out at several pipeline projects in Russia.
基金sponsored by the Foundation Funds of Institute of Geology,CEA,China (IGCEA0912)
文摘By using the Yoshimitsu Okada and Steketee fault dislocation model,we calculated the vertical and horizontal displacements along the Yingxiu-Beichuan inverse fault and Guanxian-Anxian inverse fault along which the Wenchuan MS8. 0 earthquake occurred in 2008. Compared to the achievements of field surveying along the surface rupture zone,we found that our computational results are comparable to the real displacement variation trend. Furthermore,the computational results indicated that the surface displacement fields vary with the distance from the fault,and the vertical displacement fields show strong inhomogeneity,in which larger displacement is focused on the ends of the fault. However, in contrast to the vertical displacement,the horizontal displacement shows relative uniformity in space.
基金funded by National Key Basic Research and Development Program(grant No.2008CB42570),China
文摘On April 14, 2010, a devastating earthquake measured 7.1 on the Richter scale struck Yushu county, Qinghai Province, China. Field geological investigation and remote sensing interpretation show that this earthquake generated an inverse "L-shaped" surface rupture zone, approximately 50km long. The surface rupture zone can be divided into three segments. Between the northern and middle segments of the surface rupture, there is a 16km-long segment, where no rupture was observed. The middle and the southern segments are arranged in a left-step manner, and there are right-step en echelon ruptures developed in the stepovers. The seismogenic structure is the Yushu fault, which is dominated by strike-slip with a small amount of thrust component. The earthquake results from the differential movements between the southern Qiangtang Block and northern Bayan Har Block. The earthquake recurrence interval is 185a^108a. Along an approximately 20km-long part of the Garze-Yushu fault, between the southern surface rupture of Yushu Ms7. 1 earthquake and the 1896 earthquake, there is no surface rupture, its seismic risk needs further research.
文摘Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi Volcano Observatory(TVO) in recent years are analyzed.The authors discussed the ability for the Changbaishan volcanic seismic monitoring and active level of Changbaishan volcano in recent years based on the fundamental monitoring results.The results show that Changbaishan volcano has experienced an unrest episode from 2002 to 2005,but its active level recovers to the background now.
基金supported under the project of "Experimental Prospecting of Active Fault in Urban Area" of National Development and Reform Commission of China , Grant No.20041138
文摘It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.
文摘The seismic behavior of masonry bell-towers located in Corfu, Greece, is considered since constructions of this kind are particularly vulnerable to seismic loadings. Dynamics analyses for different total heights of Corfu bell-towers and according to the seismic data of this region are carried out. A diagram of displacements is determined. The impact of the percentages of damping in the distribution of displacements is examined.
文摘This paper proposes a novel seismometer-type absolute displacement sensor aimed at detecting earthquake waves with a large magnitude and long period. However, since the measuring range of the displacement sensor is higher than its natural frequency, it is difficult to detect low frequency vibrations below 1 Hz using a conventional a seismic-type displacement sensor. In order to provide an absolute displacement detection which is capable of lowering the natural frequency and enlarging the detectable amplitude without causing structural defects, the relative signals of displacement, velocity, and acceleration between a detected object and the auxiliary mass of the sensor are fed back into the sensor. In addition, phase lag compensation is inserted to adjust phase angles, which are of a frequency of 1 Hz. According to simulation results, a detection range from 0.1 Hz to 50 Hz is expected. It has been demonstrated that the developed sensor with a small size and light weight has a detection range of from 0.5 Hz to 50 Hz for absolute displacement and velocity. As an additional advantage, the measurement displacement amplitude has been expanded to about 20 dB. This sensor is available to use for the active control method. of flexible structures like high rise buildings using the LQ control
基金founded the Projects of Science for Earthquake Resilience(XH16042Y)Project of Earthquake Science Foundation of Xinjiang,China(201501,201514)
文摘After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.
基金The research was sponsored by the Key Science and Technology R&D Program of Guangdong Province(Grant No. 2005B32601003)
文摘The locations of about 400 earthquakes in Yangjiang, Guangdong Province are determined using the double, difference earthquake location algorithm (DDA). The seismicity pattern becomes concentrated from discrete grids. The rupture characteristics of the Yangjiang earthquake sequence show a conjugated distribution in NW and NE directions. The major distribution trends NE and dips NE with an angle of 30^o and a length of 30km,and the minor distribution trends NW and dips SE with an angle of 30^o and a length of 20km. The focal depth is 5km - 15km. The distribution of the Enping earthquake sequence,which is not far from Yangjiang,is NW-trending. The relationship between hypocenter distribution and geological structure is discussed.
基金Supported by the State Key Program of National Natural Science Foundation of China (No. 50938008)the Fundamental Research Funds for Central Universities (No. 2012JBM077)
文摘In order to give the reasonable width of seismic gaps to prevent the structural pounding during ground motions,the maximum relative displacement of adjacent structures is studied in this paper.The factors that may have effects on the maximum relative displacement are discussed.As for multi-degree-of-freedom(MDOF) systems,they can be equivalent to single-degree-of-freedom(SDOF) systems with the influences of high modes neglected.The results show that the period ratio,height ratio and peak ground acceleration are the main factors that have great effects on the maximum relative displacement of adjacent structures.The maximum relative displacement of MDOF systems can be obtained from calculating the maximum relative displacement of the equivalent SDOF systems.
文摘The paper set up 3D solid overall superstructure model of Foundation and Box foundation on Rock Slope Subgrade base using the ABAQUS, and the establish the infinite element boundary, superstructure displacement of Box foundation and foundation at Rock Slope Subgrade was studied by inputting different direction of earthquake response. The results show that, for the mountain frame structure, influence on the horizontal displacement of the vertical under the action of alone big earthquake, and vertical seismic action on horizontal displacement effect is smaller by mutual function of horizontal and vertical seismic, basically is same as response under the action of horizontal earthquake alone; for step shaped box foundation, the change trend of mutual function of horizontal and vertical earthquake was the complete opposite of the maximum story drift each layer under the one-way horizontal earthquake, which indicate the presence of vertical earthquake wave effect on the box foundation displacement cannot be ignored.
基金Project(51308549)supported by the National Natural Science Foundation,China
文摘In order to study an isolation system of rolling friction with springs, computer programs were compiled to evaluate the seismic performance based on its movement characteristics. Through the programs, the influences of various seismic performance factors, e.g., rolling friction coefficient, spring constant, were systematically investigated. Results show that by increasing the rolling friction coefficient, the structural relative displacement due to seismic load effectively decreases, while the structural response magnitude varies mainly depending on the correlations between the following factors: the spring constant, the earthquake intensity, and the rolling friction coefficient. Furthermore, increasing the spring constant can decrease the structural relative displacement, as well as residual displacement, however, it increases the structural response magnitude. Finally, based on the analyses of various seismic performance factors subjected to the scenario earthquakes, optimized theoretical seismic performance can be achieved by reasonably combining the spring constant and the rolling friction coefficient.
文摘Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.
文摘Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south and Eurasian plate to the north. Several regional earthquakes have been strongly felt and caused damages in and around Tabriz during history. For example, the magnitude 7 to 7.7 Tabriz earthquake in 1780, which is the most strongest experienced one in Lesser Caucasus and east of Turkey and caused severe damage in Azerbaijan territory including Tabriz City. The urban area of Tabriz City lies on Miocene to Quaternary soft sediments (clays, sands, silts, and gravels.) resting on an old Tertiary basement. Previous studies have shown that the thickness of such soft sediments could largely influence the site response in case of an important regional earthquake. The accurate information about historical earthquakes and new faulting is an important tool for viewing the active tectonic and analyzing the earthquake risk and seismic migration. Historical records of earthquakes in Tabriz based on macro and micro seismic observations cover period of 1,000 to 1,400 years. Our study aims at mapping the seismic response of a pilot zone of Tabriz for different earthquake scenarios, a simple but robust.
文摘In recent years the application of friction-based passive energy dissipation devices have been proven very effective in reducing structural response to earthquake excitations and also implemented for a large number of buildings. Their design heavily relies on numerical simulations to model the influence of the energy dissipation devices. The modeling of friction forces must be accurate for realistic simulation of the influence of these devices. In state-of-the-practice, the hysteretic behavior of friction devices has been typically modeled with Coulomb friction having a constant coefficient of friction. However, the basic laws for typical sliding materials and experimental investigations show non-linear relationship between friction and sliding velocity, which includes stiction and Stribeck effect. The influence of stiction and Stribeck effect may be significant and can not be ignored in simulating the dynamic responses of structures with friction-based energy dissipation devices. In this paper the optimal performance of dry friction device in shear-frame buildings when subjected to earthquake ground motions has been investigated. The focus of this paper is on the optimal minimization of response of the shear-frame building. Since buildings with friction devices behave in a highly nonlinear manner, nonlinear response-history analysis considering comprehensive sliding friction models has been carried out. The performance has also been evaluated using the various response measures: the maximum absolute acceleration, the maximum base shear, and the maximum inter-story drift. Different performance indices have been used to quantify the influence of the device properties.
基金supported by the National Basic Research Program of China (Grant No. 2008CB425704)the Open Foundation of State Key Laboratory of Earthquake Dynamics (Grant No. LED2009B02)
文摘Based on the existing materials of fault segmentation,characteristic earthquakes,and their empirical relationships,we calculated the parameters of the fault segments,such as length,width,magnitudes of characteristic earthquakes,etc.Constrained by GPS velocity field,the slip rates of these fault segments in depth were inversed using the 3-D half-space elastic dislocation model.As not all of the recurrence periods and co-seismic displacements of characteristic earthquakes are known,we selected the fault segments with these two parameters known and calculated the accumulation rate of average co-seismic displacement,which shows the faults' slip rate in seismogenic layer.Then,the slip rate in depth was compared with that in seismogenic layer,the relationship between them was obtained,and this relationship was used to get the recurrence periods and co-seismic displacements of all fault segments.After the studies above,we calculated the co-seismic deformation field of all the earthquakes larger than M s 6.8 from AD 1700 one by one and inversed the potential displacement in the co-seismic deformation field.Then,we divided the potential displacement by the slip rate from GPS inversion to get the influences of these fault segments,added the influences into the elapsed time of the characteristic earthquakes,and obtained the earthquake hazard degree of all the segments we studied in the form of the ratio of elapsed time to recurrence period;so,we name the ratio as the Impending Earthquake Risk (IER).Historical earthquake cases show that the fault segment is in safety when the IER is less than 1 but in danger after the IER becomes larger than 1.In 2009,the IER is larger than 1 on the following segments,1.35 on the Tagong segment of Xianshuihe fault,1 on the Menggu-Dongchuan segment,1.04 on the Dongchuan-Xundian segment,and 1.09 on the Yiliang-Chengjiang segment of Xiaojiang fault.
基金supplied by the Japan Aerospace Exploration Agency(JAXA)(Grant Nos.AO-430 and AO-582)supported by National Natural Science Foun-dation of China(Grant Nos.40974006 and 40774003)+2 种基金National Basic Research Program of China(Grant No.2012CB719903)Research Grants Council(RGC)of the Hong Kong Special Administrative Region(Grant No.PolyU5146/11E)Scholarship Award for an Excellent Doctoral Student granted by the Ministry of Education of China(Grant No.085201001)
文摘Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface displacements by exploiting a single InSAR pair, which is called multi-aperture InSAR (MAI) technology.We study the effects of baseline errors and the ionosphere on MAI technology and develop a directional filter and interpolator to minimize the ionospheric effects.A PALSAR image pair covering the 2010 Yushu earthquake is used to estimate the 2-D displacement fields of the earthquake using the MAI approach.The experimental results show that MAI is superior to conventional Offset-Tracking and therefore has great potential in co-seismic displacement measurement and source parameter inversion.