In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the per...In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.展开更多
The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainla...The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.展开更多
Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is ne...Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is necessary to develop an appropriate building damage-rate estimation model.The building damage survey data were recorded and constructed into files by the Architecture and Building Research Institute(ABRI),Taiwan for the 1999 Chi-Chi earthquake in the Nantou region as a basis for developing a building damage rate estimation model by applying fuzzy theory to express the fragility curves of buildings as a membership function.Empirical verification was performed using post-earthquake building damage data in the Taichung city that suffered relatively severe damage.Results indicate that fuzzy theory can be applied to predict building damage rates and that the estimated results are similar to actual disaster figures.Prediction of disaster damage using building damage rates can provide a reference for immediate disaster response during earthquakes and for regular disaster prevention and rescue planning.展开更多
Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform unde...Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform under the earthquake loading in the seismically active area. The dynamic analysis includes interpretation of dynamic design parameters based on the available site-specific data,together with foundation design recommendations for earthquake loading conditions,which include free-field site response analyses,liquefaction analyses and soil-pile interaction analyses.展开更多
This paper analyzes the seismicity and seismic risk distribution in the Bohai Sea. Based on the seismic design parameters of 46 platforms in the Bohai Sea, a statistic analysis is made on the ratios of the peak accele...This paper analyzes the seismicity and seismic risk distribution in the Bohai Sea. Based on the seismic design parameters of 46 platforms in the Bohai Sea, a statistic analysis is made on the ratios of the peak accelerations for different probability levels. In accordance with the two-stage design method, a scheme of two design seismic levels is proposed, and two fortification goals are established respectively for strength level earthquakes and ductility level earthquakes. Through analogy and comparison to the Chinese seismic code for buildings, it is proposed that the probability level for the strength and ductility level earthquakes takes return periods of 200a and 1000~2500a respectively, and we further expounded on its rationality. Finally, the fortification parameters in the sub-regions of Bohai Sea area are given in the light of seismic risk zonation and ground motion division. This article is a summary of experiences from many years of offshore platform seismic fortification work, and an exploratory study on the seismic fortification standards of offshore platforms in China, which may provide some references for the establishment of the standard.展开更多
This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in th...This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.展开更多
Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in diffe...Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in different depths are obtained after statistical analysis of the experimental soil dynamic data from 20 recent site seismic safety evaluation reports in the Beijing area. Furthermore,based on two typical engineering sites,the influence of four different soil dynamic parameters,the statistic mean values,experimental values, values recommended by Yuan Xiaoming,and the values recommended in the code for seismic safety evaluation of engineering sites( DB001-94) are analyzed. The result shows that mean statistical values are applicable to seismic safety evaluation work in the Beijing area,especially for some inter-layered silty clays whose undisturbed soil samples are hard to obtain.展开更多
It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-t...It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-type buildings and unknown earthquake excitation.In this paper,it is extended to the investigation of the identification of flexible buildings with bending deformation and the unmeasured earthquake ground motion.In the absolute co-ordinate system,the unmeasured ground motion can be treated as an unknown translational force and a bending moment at the 1st floor level of a flexible building.Structural unknown parameters above the 1st story of the building can be identified by the extended Kalman estimator and the 1st story stiffness and the unmeasured ground motion are subsequently estimated based on the least-squares estimation.The proposed algorithm is further extended to the identification of tall bending-type buildings based on substructure approach.Inter-connection effect between sub-buildings is treated as‘additional unknown inputs’to sub-buildings,which are estimated by the extended Kalman estimator without the measurements of rotational responses.Numerical examples demonstrate the identification of a multi-story,tall bending-type building and its unmeasured earthquake ground motions using only partial measurements of structural absolute responses.展开更多
文摘In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.
基金This project was sponsored by the Joint Earthquake Science Foundation of CEA(Grant No.103075 and No.104016)
文摘The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.
基金Project(93-2625-Z-027-006)supported by the National Science Council of Taipei,China
文摘Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is necessary to develop an appropriate building damage-rate estimation model.The building damage survey data were recorded and constructed into files by the Architecture and Building Research Institute(ABRI),Taiwan for the 1999 Chi-Chi earthquake in the Nantou region as a basis for developing a building damage rate estimation model by applying fuzzy theory to express the fragility curves of buildings as a membership function.Empirical verification was performed using post-earthquake building damage data in the Taichung city that suffered relatively severe damage.Results indicate that fuzzy theory can be applied to predict building damage rates and that the estimated results are similar to actual disaster figures.Prediction of disaster damage using building damage rates can provide a reference for immediate disaster response during earthquakes and for regular disaster prevention and rescue planning.
文摘Offshore platforms in seismically active areas should be designed to service severe earthquake excitations with no global structural failure. This paper summarizes the dynamic analysis of a typical fixed platform under the earthquake loading in the seismically active area. The dynamic analysis includes interpretation of dynamic design parameters based on the available site-specific data,together with foundation design recommendations for earthquake loading conditions,which include free-field site response analyses,liquefaction analyses and soil-pile interaction analyses.
基金Supported by Special Scientific Research of Public Welfare Profession of Ministry of Finance,the People's Republic of China(200708055)
文摘This paper analyzes the seismicity and seismic risk distribution in the Bohai Sea. Based on the seismic design parameters of 46 platforms in the Bohai Sea, a statistic analysis is made on the ratios of the peak accelerations for different probability levels. In accordance with the two-stage design method, a scheme of two design seismic levels is proposed, and two fortification goals are established respectively for strength level earthquakes and ductility level earthquakes. Through analogy and comparison to the Chinese seismic code for buildings, it is proposed that the probability level for the strength and ductility level earthquakes takes return periods of 200a and 1000~2500a respectively, and we further expounded on its rationality. Finally, the fortification parameters in the sub-regions of Bohai Sea area are given in the light of seismic risk zonation and ground motion division. This article is a summary of experiences from many years of offshore platform seismic fortification work, and an exploratory study on the seismic fortification standards of offshore platforms in China, which may provide some references for the establishment of the standard.
文摘This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.
基金sponsored jointly by the Research Grants from Institute of Crustal Dynamics,CEA(NO. ZDJ2007-7)the 2007 Special Research Project 8-50 of the Department of Finance
文摘Soil dynamic parameters,including dynamic shear modulus ratio and damping ratio,have important effects on the results of layered soil earthquake response. In this paper,the mean parameter values of silty clay in different depths are obtained after statistical analysis of the experimental soil dynamic data from 20 recent site seismic safety evaluation reports in the Beijing area. Furthermore,based on two typical engineering sites,the influence of four different soil dynamic parameters,the statistic mean values,experimental values, values recommended by Yuan Xiaoming,and the values recommended in the code for seismic safety evaluation of engineering sites( DB001-94) are analyzed. The result shows that mean statistical values are applicable to seismic safety evaluation work in the Beijing area,especially for some inter-layered silty clays whose undisturbed soil samples are hard to obtain.
基金supported by the National Natural Science Foundation of China(Grant No.51178406)the State Key Laboratory for Disaster Reduction in Civil Engineering at Tongji University(Grant No.SLDRCE10-MB-01)
文摘It is important to explore efficient algorithms for the identification of both structural parameters and unmeasured earthquake ground motion.Recently,the authors proposed an algorithm for the identification of shear-type buildings and unknown earthquake excitation.In this paper,it is extended to the investigation of the identification of flexible buildings with bending deformation and the unmeasured earthquake ground motion.In the absolute co-ordinate system,the unmeasured ground motion can be treated as an unknown translational force and a bending moment at the 1st floor level of a flexible building.Structural unknown parameters above the 1st story of the building can be identified by the extended Kalman estimator and the 1st story stiffness and the unmeasured ground motion are subsequently estimated based on the least-squares estimation.The proposed algorithm is further extended to the identification of tall bending-type buildings based on substructure approach.Inter-connection effect between sub-buildings is treated as‘additional unknown inputs’to sub-buildings,which are estimated by the extended Kalman estimator without the measurements of rotational responses.Numerical examples demonstrate the identification of a multi-story,tall bending-type building and its unmeasured earthquake ground motions using only partial measurements of structural absolute responses.