期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
南海深水块体搬运沉积体系及其油气勘探意义 被引量:23
1
作者 王大伟 吴时国 +1 位作者 吕福亮 王彬 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第5期14-19,共6页
依据块体搬运沉积体系的地球物理识别特征,利用最新采集的二维和三维高分辨率地震资料,在南海深水区域的琼东南盆地、白云凹陷和文莱深水地层中发现了块体搬运沉积体系(MTDs);建立典型MTDs的沉积模式,探讨MTDs的深水油气勘探意义。结果... 依据块体搬运沉积体系的地球物理识别特征,利用最新采集的二维和三维高分辨率地震资料,在南海深水区域的琼东南盆地、白云凹陷和文莱深水地层中发现了块体搬运沉积体系(MTDs);建立典型MTDs的沉积模式,探讨MTDs的深水油气勘探意义。结果表明:MTDs表现为弱振幅和反射杂乱的特点,发育正断层、逆冲断层、挤压脊和褶皱等沉积构造;典型的MTDs可以划分为头部拉张区域、体部滑移-挤压区域和趾部挤压区域3个结构单元;MTDs主要是富泥沉积物,在深水油气勘探中往往充当良好盖层,容易与浊流沉积体系一起形成深水地层圈闭,也有部分MTDs是富砂沉积物,可以成为潜在油气储层。 展开更多
关键词 南海 深水 块体搬运沉积体系 沉积模式 地震识别特征
下载PDF
Research on Seismic Interpretation Method of Karst-Fractured Zone
2
作者 CUIRuo-fei ZHANGCong-ling 《Journal of China University of Mining and Technology》 EI 2005年第1期12-15,共4页
In this paper, the fundamentals of predicting karst-fractured zones using both seismic attribute technique and pattern recognition method are introduced. Ordovician limestone karst-fractured zones in the First Mining ... In this paper, the fundamentals of predicting karst-fractured zones using both seismic attribute technique and pattern recognition method are introduced. Ordovician limestone karst-fractured zones in the First Mining Area of Wutongzhuang Coal Mine were forecast by using practical seismic data. The result shows that both seismic attribute technique and pattern recognition method are effective in predicting karst-fractured zones. 展开更多
关键词 seismic attribute pattern recognition karst-fractured zone
下载PDF
Seismic signal recognition using improved BP neural network and combined feature extraction method 被引量:1
3
作者 彭朝琴 曹纯 +1 位作者 黄姣英 刘秋生 《Journal of Central South University》 SCIE EI CAS 2014年第5期1898-1906,共9页
Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural... Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network. 展开更多
关键词 seismic signal feature extraction BP neural network signal identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部