Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propos...Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.展开更多
In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(...In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.展开更多
The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of gre...The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX05014-001-008)the National Key Basic Research Program of China(No.2014CB239006)+2 种基金the National Natural Science Foundation of China(Nos.41104069 and 41274124)the Open foundation of SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0033)the Fundamental Research Funds for Central Universities(No.16CX06046A)
文摘Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-off angle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.
基金Project(2011CB013605)supported by the National Basic Research Development Program of China(973 Program)Projects(51178071,51008041)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0751)supported by the New Century Excellent Talents Program in University of Ministry of Education of China
文摘In order to study the differences in vertical component between onshore and offshore motions,the vertical-to-horizontal peak ground acceleration ratio(V/H PGA ratio) and vertical-to-horizontal response spectral ratio(V/H) were investigated using the ground motion recordings from the K-NET network and the seafloor earthquake measuring system(SEMS).The results indicate that the vertical component of offshore motions is lower than that of onshore motions.The V/H PGA ratio of acceleration time histories at offshore stations is about 50%of the ratio at onshore stations.The V/H for offshore ground motions is lower than that for onshore motions,especially for periods less than 0.8 s.Furthermore,based on the results in statistical analysis for offshore recordings in the K-NET,the simplified V/H design equations for offshore motions in minor and moderate earthquakes are proposed for seismic analysis of offshore structures.
基金jointly sponsored by the Special Program of Earthquake Science and Technology of Earthquake Administration of Sichuan Province(LY1302) the National Key Technology R&D Program of China(2012BAK19802)
文摘The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.