期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
地震随机噪声衰减的改进经验模态分解法研究及应用
1
作者 温馨 王思琳 +1 位作者 李鹏 刘财 《世界地质》 CAS 2022年第3期614-622,共9页
为解决地震随机噪声衰减问题,引入经验模态分解法,但该方法存在严重的端点效应问题并使得结果存在较大的误差。因此提出通过寻找包络线极大值点并进行平行延拓从而修正边界极值点的方法来对经验模态分解法进行改进。通过仿真实验和理论... 为解决地震随机噪声衰减问题,引入经验模态分解法,但该方法存在严重的端点效应问题并使得结果存在较大的误差。因此提出通过寻找包络线极大值点并进行平行延拓从而修正边界极值点的方法来对经验模态分解法进行改进。通过仿真实验和理论模型的测试,发现改进后的方法能很好地抑制端点效应,分解更精准,在对地震随机噪声进行衰减同时能更好地保护构造信息。 展开更多
关键词 经验模态分解法 端点效应 极值点修正 地震随机噪声衰减
下载PDF
Random seismic noise attenuation by learning-type overcomplete dictionary based on K-singular value decomposition algorithm 被引量:2
2
作者 XU Dexin HAN Liguo +1 位作者 LIU Dongyu WEI Yajie 《Global Geology》 2016年第1期55-60,共6页
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio... The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio. 展开更多
关键词 sparse representation seismic denoising signal-to-noise ratio K-singular value decomposition learning-type overcomplete dictionary.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部