In this study, we analyze the co-seismic response of water levels in the Jiaji well to strong earthquakes (Ms ≥7. 8) from 2001 to 2010 at an epicentrai distance less than 8000km. We investigated the co-seismic vari...In this study, we analyze the co-seismic response of water levels in the Jiaji well to strong earthquakes (Ms ≥7. 8) from 2001 to 2010 at an epicentrai distance less than 8000km. We investigated the co-seismic variation form of water levels, and analyzed the relationship between the amplitude of water level variation and the magnitude and the epicentral distance. We then checked the seismic wave phases when the changes of water level occurred. It was shown that: (1) the water level's co-seismic response is mainly characterized by escalation with no oscillation; (2) the amplitude of water level change has a certain connection with epicentral distance and magnitude; (3) co-seismic response of water levels in the Jiaji well shows a certain directivity; (4) most of the co-seismic responses were caused by surface waves, and some by long-period S waves.展开更多
基金supported by the 2011 "China Spark Program"of China Earthquake Administration(XH1020)
文摘In this study, we analyze the co-seismic response of water levels in the Jiaji well to strong earthquakes (Ms ≥7. 8) from 2001 to 2010 at an epicentrai distance less than 8000km. We investigated the co-seismic variation form of water levels, and analyzed the relationship between the amplitude of water level variation and the magnitude and the epicentral distance. We then checked the seismic wave phases when the changes of water level occurred. It was shown that: (1) the water level's co-seismic response is mainly characterized by escalation with no oscillation; (2) the amplitude of water level change has a certain connection with epicentral distance and magnitude; (3) co-seismic response of water levels in the Jiaji well shows a certain directivity; (4) most of the co-seismic responses were caused by surface waves, and some by long-period S waves.