期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
运用LSTM神经网络对川滇地区的地震中期预报——回溯性预测2008年汶川M_(S)8.0地震的探索 被引量:3
1
作者 石耀霖 李林芳 程术 《中国科学院大学学报(中英文)》 CSCD 北大核心 2022年第1期1-12,共12页
地震预报是当代科学难题,把机器学习方法运用于地震预报探索是一个研究热点。大地震造成巨大的人员伤亡和经济损失,因此对大震的预测是地震预报的主要目标。利用1970年以来的川滇地震目录,选择16个反映地震时空强度分布特征的地震预测因... 地震预报是当代科学难题,把机器学习方法运用于地震预报探索是一个研究热点。大地震造成巨大的人员伤亡和经济损失,因此对大震的预测是地震预报的主要目标。利用1970年以来的川滇地震目录,选择16个反映地震时空强度分布特征的地震预测因子,采取滑动时空窗口方法有效地挖掘数据的隐藏信息,对川滇部分地区开展了基于长短期记忆(long short-term memory,LSTM)神经网络的为期一年的地震预报研究。结果显示,用1970—2019年地震目录的70%(时间窗口大概为1970年到2004年前后)作为训练集训练网络,对剩余的30%作为测试集(时间窗口大概为2005年前后到2019年底)进行回溯性预报检验时,实际震级落在预测震级±0.5内的准确率为70.2%,虚报率为18.7%,漏报率为11.1%,可以回溯性预测2008年汶川M_(S)8.0地震。为测试模型的稳健性,进行了扩大研究区域范围、改变大震级地震在均方差计算中的权重等测试。在这些测试中,LSTM神经网络模型依然表现良好。 展开更多
关键词 中期地震预报 长短期记忆神经网络 地震预报因子 R值 川滇地区
下载PDF
Knowledge Representation Methods in Expert System for Earthquake Prediction ESEP 3.0
2
作者 WangWei WuGengfeng +3 位作者 ZhangBofeng ZhengZhaobi LiuHui LiSheng 《Earthquake Research in China》 2005年第1期43-53,共11页
Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are... Knowledge representation is a key to the building of expert systems. The performance of knowledge representation methods directly affects the intelligence level and the problem-solving ability of the system. There are various kinds of knowledge representation methods in ESEP3.0. In this paper, the authors introduce the knowledge representation methods, such as structure knowledge, seismological and precursory forecast knowledge, machine learning knowledge, synthetic prediction knowledge, knowledge to validate and verify certainty factors of anomalous evidence and support knowledge, etc. and propose a model for validation of certainty factors of anomalous evidence. The knowledge representation methods represent all kinds of earthquake prediction knowledge well. 展开更多
关键词 expert system knowledge representation fuzzy associative memory (FAM) certainty factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部