The great Haiyuan earthquake occurred at 20:06:09 on December 16,1920 in the south of Ningxia Hui Autonomous Region.The magnitude of this earthquake is 8.5,listed as one of the three greatest earthquakes to ever occur...The great Haiyuan earthquake occurred at 20:06:09 on December 16,1920 in the south of Ningxia Hui Autonomous Region.The magnitude of this earthquake is 8.5,listed as one of the three greatest earthquakes to ever occur in Chinese continent.This devastating earthquake killed about 230,000 people according to previous reports.Recent studies show that total casualties may have reached 270,000.The study of this earthquake using modern scientific and technological methods is the first in the history of earthquake research in China.Significant breakthroughs took place in the middle of last century.The earthquake surface rupture,with 200km in length and prominent left-lateral strike-slip displacement,was discovered.The first monograph on the Haiyuan earthquake was published.In the 1980s,innovative large-scale geological mapping technology for active faults was developed during studies on the Haiyuan earthquake surface ruptures,with the publication of the first large-scale map of the Haiyuan active fault.Quantitative studies were carried out on the fine structure and geometry of the fault zone,Holocene slip rate,co-seismic displacement,paleoearthquake and recurrence intervals and future earthquake risk assessment.The innovative studies also included rupture propagation along the strike-slip fault,evolution of pull-apart basins,determination of total displacement of the strike-slip fault,transition equilibrium between strike-slip displacement along its major strand and crustal shortening at the end of the strike-slip fault,and the mechanism of deformation on Liupan Mountain.On the occasion of the 90th anniversary of the Haiyuan earthquake,careful retrospect of scientific progress achieved during the recent 20 years would be helpful in providing further direction in the study of active faults and earthquake hazard reduction.While taking this occasion to remember those lost by the Haiyuan earthquake,we aim to make greater contributions to earthquake prediction and seismic hazard reduction.展开更多
Since 1949, Chinese scientists have successfully predicted occurrence of many major earthquakes, such as the Haicheng MT. 3 event in 1975 and the Asian Game Village shock of 1990. In recent 20 years, however, some sei...Since 1949, Chinese scientists have successfully predicted occurrence of many major earthquakes, such as the Haicheng MT. 3 event in 1975 and the Asian Game Village shock of 1990. In recent 20 years, however, some seis-mologists abroad have taken a disappointed and pessimistic view to earthquake prediction because of several failures. They suggest that the efforts should turn toward other fields, such as identification of building' s earthquake-proof capability, enhancement of house strength, and development of precise observational systems which will facilitate fast loca- ting of future major temblors and emergent relief on site. Such a pessimistic feeling has also influenced some Chinese researchers of the seismological community who attempted to give up efforts for earthquake prediction. Meanwhile other scientific workers are insisting in experiments and practices in this field and achieved some inspiring results. In this paper, we present several representative cases to illustrate that earthquakes are predictable under some conditions.展开更多
This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the ge...This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the geomagnetic vertical component. It is shown that in addition to the changing rules of geomagnetic low-value displacement itself, there is a better correlation between geomagnetic low-value displacement and the occurrence of moderately strong earthquakes. There appeared to be geomagnetic low-value displacement before the moderately strong earthquakes in Gansu in the 9 years from 1995 to 2003. This result indicates that geomagnetic low-value displacement is of instructive significance for earthquake prediction to some extents.展开更多
This paper describes briefly the recent advances and achievements of the research projects conducted by the Institute of Engineering Mechanics (IEM) in the period of the Ninth Five-Year Plan (1995~2000) with the supp...This paper describes briefly the recent advances and achievements of the research projects conducted by the Institute of Engineering Mechanics (IEM) in the period of the Ninth Five-Year Plan (1995~2000) with the support of the China Seismological Bureau (CSB). These projects are related with key problems in the field of earthquake engineering. They are: development of the methods for determining earthquake resistant design load level, study on mechanisms of earthquake damage to buildings; development of new technology of base isolation, and study on earthquake damage prediction and seismic loss assessment methods. Through these studies, quite a number of problems have been solved and some of them have been applied in earthquake engineering design and practice.展开更多
The concept of state vector stems from statistical physics, where it is usually used to describe the evolution of a continuum field in its way of coarse-graining. In this paper, the state vector is employed to depict ...The concept of state vector stems from statistical physics, where it is usually used to describe the evolution of a continuum field in its way of coarse-graining. In this paper, the state vector is employed to depict the evolution of seismicity quantitatively, and some interesting results are presented. The authors investigated some famous earthquake cases (e.g., the Haicheng earthquake, the Tangshan earthquake, the west Kunlun Mountains earthquake, etc.) and found that the state vectors evidently change prior to the occurrence of large earthquakes. Thus it is believed that the state vector can be used as a kind of precursor to predict large earthquakes.展开更多
文摘The great Haiyuan earthquake occurred at 20:06:09 on December 16,1920 in the south of Ningxia Hui Autonomous Region.The magnitude of this earthquake is 8.5,listed as one of the three greatest earthquakes to ever occur in Chinese continent.This devastating earthquake killed about 230,000 people according to previous reports.Recent studies show that total casualties may have reached 270,000.The study of this earthquake using modern scientific and technological methods is the first in the history of earthquake research in China.Significant breakthroughs took place in the middle of last century.The earthquake surface rupture,with 200km in length and prominent left-lateral strike-slip displacement,was discovered.The first monograph on the Haiyuan earthquake was published.In the 1980s,innovative large-scale geological mapping technology for active faults was developed during studies on the Haiyuan earthquake surface ruptures,with the publication of the first large-scale map of the Haiyuan active fault.Quantitative studies were carried out on the fine structure and geometry of the fault zone,Holocene slip rate,co-seismic displacement,paleoearthquake and recurrence intervals and future earthquake risk assessment.The innovative studies also included rupture propagation along the strike-slip fault,evolution of pull-apart basins,determination of total displacement of the strike-slip fault,transition equilibrium between strike-slip displacement along its major strand and crustal shortening at the end of the strike-slip fault,and the mechanism of deformation on Liupan Mountain.On the occasion of the 90th anniversary of the Haiyuan earthquake,careful retrospect of scientific progress achieved during the recent 20 years would be helpful in providing further direction in the study of active faults and earthquake hazard reduction.While taking this occasion to remember those lost by the Haiyuan earthquake,we aim to make greater contributions to earthquake prediction and seismic hazard reduction.
文摘Since 1949, Chinese scientists have successfully predicted occurrence of many major earthquakes, such as the Haicheng MT. 3 event in 1975 and the Asian Game Village shock of 1990. In recent 20 years, however, some seis-mologists abroad have taken a disappointed and pessimistic view to earthquake prediction because of several failures. They suggest that the efforts should turn toward other fields, such as identification of building' s earthquake-proof capability, enhancement of house strength, and development of precise observational systems which will facilitate fast loca- ting of future major temblors and emergent relief on site. Such a pessimistic feeling has also influenced some Chinese researchers of the seismological community who attempted to give up efforts for earthquake prediction. Meanwhile other scientific workers are insisting in experiments and practices in this field and achieved some inspiring results. In this paper, we present several representative cases to illustrate that earthquakes are predictable under some conditions.
基金sponsored by the Natural Science Foundation of Gansu Province (3ZS061-A25-008),China
文摘This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the geomagnetic vertical component. It is shown that in addition to the changing rules of geomagnetic low-value displacement itself, there is a better correlation between geomagnetic low-value displacement and the occurrence of moderately strong earthquakes. There appeared to be geomagnetic low-value displacement before the moderately strong earthquakes in Gansu in the 9 years from 1995 to 2003. This result indicates that geomagnetic low-value displacement is of instructive significance for earthquake prediction to some extents.
文摘This paper describes briefly the recent advances and achievements of the research projects conducted by the Institute of Engineering Mechanics (IEM) in the period of the Ninth Five-Year Plan (1995~2000) with the support of the China Seismological Bureau (CSB). These projects are related with key problems in the field of earthquake engineering. They are: development of the methods for determining earthquake resistant design load level, study on mechanisms of earthquake damage to buildings; development of new technology of base isolation, and study on earthquake damage prediction and seismic loss assessment methods. Through these studies, quite a number of problems have been solved and some of them have been applied in earthquake engineering design and practice.
基金NSFC under Grant No.10232050The Information Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences"Supercomputing Environment Construction and Application"(INF105-SCE-2-02)+1 种基金Seismological Joint Foundation(305016)the Special Funds for Major State Basic Research Project under Grant No.2002CB412706 and 2001 BA601 B01-01-01-04.
文摘The concept of state vector stems from statistical physics, where it is usually used to describe the evolution of a continuum field in its way of coarse-graining. In this paper, the state vector is employed to depict the evolution of seismicity quantitatively, and some interesting results are presented. The authors investigated some famous earthquake cases (e.g., the Haicheng earthquake, the Tangshan earthquake, the west Kunlun Mountains earthquake, etc.) and found that the state vectors evidently change prior to the occurrence of large earthquakes. Thus it is believed that the state vector can be used as a kind of precursor to predict large earthquakes.