By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six differen...By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six different grey earthquake forecast models in this paper. Using the record of major earthquakes in Japan from 1872 to 1995, we forecast future earthquakes in Japan. We develop an earthquake forecast model. By using the major earthquakes in Japan from 1872 to 1984, we forecast earthquakes from 1985 to 1995 and check the precision of the grey earthquake models. We find that the grey system theory can be applied to earthquake forecast. We introduce the above analysis methods and give a real example to evaluate and forecast. We also further discuss the problems of how to improve the precision of earthquake forecast and how to strengthen the forecast models in future research.展开更多
In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the ...In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4°× 4°for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.展开更多
Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of ...Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.展开更多
文摘By combining conventional grey correlation analysis, grey clustering method and grey forecasting methods with our multi-goal forecast thoughts and the techniques of grey time series processing, we develop six different grey earthquake forecast models in this paper. Using the record of major earthquakes in Japan from 1872 to 1995, we forecast future earthquakes in Japan. We develop an earthquake forecast model. By using the major earthquakes in Japan from 1872 to 1984, we forecast earthquakes from 1985 to 1995 and check the precision of the grey earthquake models. We find that the grey system theory can be applied to earthquake forecast. We introduce the above analysis methods and give a real example to evaluate and forecast. We also further discuss the problems of how to improve the precision of earthquake forecast and how to strengthen the forecast models in future research.
文摘In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4°× 4°for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.
文摘Using GPS observations of horizontal movement from 2001 to 2003 and the cross-fault mobile short-levelling data of 1988~2003, and with the aid of the improved negative dislocation model and the time-varying curve of strain intensity ratio of fault deformation, the regional tectonic deformation background and medium- and short-term precursors related to the preparation of the Minle-Shandan earthquakes of M S6.1 and M S5.8 on October 25, 2003 are investigated. The results reveal that, under the background of the wide-range deformation adjustment, short-term relaxation and recovery caused by the Kunlun Mountains earthquake of M S8.1, the hypocenters of the earthquakes are located on the north edge of the shear stress enhancement zone between the compressional locked segments of block boundary fault, a place which may represent an accelerated strain accumulation. An obvious anomaly of strain intensity ratio appeared in short-levelling measurements crossing over the fault at the Shihuiyaokou site, the closest to the epicenters, 3 months before the occurrence of the earthquakes. In addition, the variation in number of anomalies from 10-odd days to months before the earthquakes in the entire monitoring area and the anomaly concentration and local enhancement relative to near source in the 3 months before the earthquakes are regarded to be precursors to the two events.