To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer...To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.展开更多
In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generati...In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generation of Land Piezoelectric Geophone (LPG) and analyze its performance. Our field experiments demonstrate that our new LPG can be used to substitute for VGs in order to eliminate phase, frequency and energy differences between different geophone systems commonlv used in transition areas.展开更多
Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposit...Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.展开更多
After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results...After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.展开更多
Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions s...Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions showing that earthquakes are the greatest threat. Seismic hazard of the central Himalayan region has been examined based upon kernel density function method. Faults are so nearer that it is difficult to judge which earthquake belongs to which fault and even some parts of the faults do not hold earthquakes, and usual method of assigning the earthquakes to the nearest fault developing magnitude-frequency relationship is not applicable. Thus, seismic hazard is estimated considering area sources with different densities at each location based upon historical earthquakes using kernel density functions which account both earthquake sizes and numbers. Fault is considered as one earthquake with its highest magnitude at centre when calculating density but does not aid in earthquake data base for recurrence relationship. Since there are no specific attenuation laws developed for the Himalayan region, five attenuation laws developed for other subduction zones are selected and used giving equal weight to all to minimize the uncertainties. Then, probabilistic spectra for various natural periods at Kathmandu are calculated and plotted.展开更多
The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Di...The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.展开更多
A seismometer data acquisition unit has been used in the Changping seismic station to record the output of a strainmeter. The output of a strainmeter was sampled at a rate of l00/sec by seismometer acquisition from th...A seismometer data acquisition unit has been used in the Changping seismic station to record the output of a strainmeter. The output of a strainmeter was sampled at a rate of l00/sec by seismometer acquisition from the original rate of 1 per minute. Plenty of high frequency sampled data was recorded. The minute value curve calculated from the seismometer acquisition are consistent with that of the original data sampled by the strain acquisition system. More complete waveforms were recorded with a higher sampling rate, and seismic phase parameters calculated by using higher sampling rate strain seismic waves are also in consistency with the results of its predecessors. Spectra of the strain seismic waves are compared with that of seismic waves recorded by a seismometer in the Shisanling seismic station, and their trends are almost the same. Besides, some lower frequency components still exist in strain seismic waves.展开更多
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the c...Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.展开更多
Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the...Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.展开更多
Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section undergrou...Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures展开更多
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(Grant No.2013AA092501)the China Geological Survey Projects(Grant Nos.GZH201100303 and GZH201100305)
文摘To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.
基金The work is sponsored by Nation's "863" Project (No. 2001AA602018).
文摘In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generation of Land Piezoelectric Geophone (LPG) and analyze its performance. Our field experiments demonstrate that our new LPG can be used to substitute for VGs in order to eliminate phase, frequency and energy differences between different geophone systems commonlv used in transition areas.
基金supported by National Key S&T Special Projects of Marine Carbonate 2008ZX05000-004CNPC Projects 2008E-0610-10
文摘Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.
基金founded the Projects of Science for Earthquake Resilience(XH16042Y)Project of Earthquake Science Foundation of Xinjiang,China(201501,201514)
文摘After the Yutian M_S7.3 earthquake,the authors instantly collected 1Hz high frequency data of the 4 reference stations within 350 km around the epicenter,and calculated the GNSS data with the TRACK module. The results showed that:( 1) The co-seismic displacement of Yutian station,about 54 km from the epicenter,is the most obvious,particularly in the EW component,with a change of about 52.5 ± 11mm,which is more than three times the mean-square error of calculating precision.( 2) In the Yutian reference station,the biggest variation in the EW component appeared within 1 minute after the earthquake.( 3) The change in the NS component is not great.
文摘Subduction of Indian plate beneath the Eurasian plate has formed three thrust faults along Himalayas. Due to continuous shortening, many earthquakes have occurred in the past causing massive deaths and destructions showing that earthquakes are the greatest threat. Seismic hazard of the central Himalayan region has been examined based upon kernel density function method. Faults are so nearer that it is difficult to judge which earthquake belongs to which fault and even some parts of the faults do not hold earthquakes, and usual method of assigning the earthquakes to the nearest fault developing magnitude-frequency relationship is not applicable. Thus, seismic hazard is estimated considering area sources with different densities at each location based upon historical earthquakes using kernel density functions which account both earthquake sizes and numbers. Fault is considered as one earthquake with its highest magnitude at centre when calculating density but does not aid in earthquake data base for recurrence relationship. Since there are no specific attenuation laws developed for the Himalayan region, five attenuation laws developed for other subduction zones are selected and used giving equal weight to all to minimize the uncertainties. Then, probabilistic spectra for various natural periods at Kathmandu are calculated and plotted.
基金jointly sponsored by the National Key Technology R&D Program of China(2012BAK19B04-01-05)the Youth Earthquake Situation Tracking Program of China Earthquake Administration(2015010106)
文摘The Ms7. 3 earthquake occurred in Yutian, Xinjiang on February 12, 2014. Based on seismic waveform data before the earthquake and aftershocks of the earthquake sequence, which were recorded by the Xinjiang Regional Digital Seismic Network, this paper corrected instrument response, propagation path and site response of the S-wave recording spectra. We then calculated with genetic algorithms, on the basis of the Brune model, the source parameters of the 102 M, ≥ 3. 0 Yutian earthquake sequence, seismic moment, apparent stress and corner frequency. The results show that, seismic moment of the earthquake sequence is between 3. 46 × 10^11 -2. 08×10^15N.m, apparent stress is between 1.48 × 10^5 -1.16 ×10^6Pa, mean stress level is 0. 31MPa, and corner frequency is between 1.4-7. 1Hz in the range of 3. 0 -5. 0. By analyzing the apparent stress and corner frequency variation with time, we obtain that apparent stress of earthquakes before the Yutian Ms7. 3 earthquake was significantly higher than the aftershock sequence, but the corner frequency was significantly lower than the aftershock sequence. Apparent stress was at a high level before the main shock, which shows that the main shock zone accumulated higher stress, and then the apparent stress was reduced. The main shock occurred in the process of slow increase. Because of the release of a large amount of stress, after the Ms7. 3 earthquake, the apparent stress was gradually reduced. That was the performance of low stress fracture of aftershocks.
基金sponsored by Central Public-interest Scientific Institution Basic Research Fund of Institute of Crustal Dynamics,CEA(ZDJ2008-40,ZDJ2010-15)
文摘A seismometer data acquisition unit has been used in the Changping seismic station to record the output of a strainmeter. The output of a strainmeter was sampled at a rate of l00/sec by seismometer acquisition from the original rate of 1 per minute. Plenty of high frequency sampled data was recorded. The minute value curve calculated from the seismometer acquisition are consistent with that of the original data sampled by the strain acquisition system. More complete waveforms were recorded with a higher sampling rate, and seismic phase parameters calculated by using higher sampling rate strain seismic waves are also in consistency with the results of its predecessors. Spectra of the strain seismic waves are compared with that of seismic waves recorded by a seismometer in the Shisanling seismic station, and their trends are almost the same. Besides, some lower frequency components still exist in strain seismic waves.
基金sponsored by the Earthquake Situation Tracking Program of 2014 (2014020110)the Science and Technological Fund of Earthquake Administration of Xinjiang Uygur Autonomous Region,China (201402)
文摘Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.
基金Jointly funded by the Natural Science Foundation of China(40774018)the Seismic Scientific and Technological Spark Project,China Earthquake Administration(XH13009Y)the Earthquake Research Foundation,Earthquake Administration of Anhui Province(20120702)
文摘Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.
基金Financial support from the Beijing Natural Science Foundation (No. KZ200810016007)the National 973 Key Program (No. 2010CB732003)the National Science Foundation of China(NSFC) (No. 50825403) is gratefully acknowledged
文摘Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures