When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world expe...Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.展开更多
In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based o...In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based on Matlab/Simulink software.The weighted root mean square(RMS)acceleration responses and the power spectral density(PSD)acceleration responses of the driver s seat heave,the pitch and roll angle of the cab in the low-frequency region are chosen as objective functions under different operation conditions of the vehicle.The results show that the impact of off-road terrains on the driver s ride comfort and health is clear under various conditions of deformable terrains and range of vehicle velocities.In particular,the driver s ride comfort is greatly affected by a soil terrain while the comfortable shake of the driver is strongly affected by a sand terrain.In addition,when the vehicle travels on a poor soil terrain in the frequency range below 4 Hz,more resonance peaks of acceleration PSD responses occurred than that on a rigid road of ISO 2631-1 level C.Thus,the driver s health is significantly affected by the deformable terrain in a low-frequency range.展开更多
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.
文摘Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.
基金The Science and Technology Support Program of Jiangsu Province(No.BE2014133)the Prospective Joint Research Program of Jiangsu Province(No.BY2014127-01)
文摘In order to evaluate the impact of off-road terrains on the ride comfort of construction vehicles,a nonlinear dynamic model of the construction vehicles interacting with the terrain deformations is established based on Matlab/Simulink software.The weighted root mean square(RMS)acceleration responses and the power spectral density(PSD)acceleration responses of the driver s seat heave,the pitch and roll angle of the cab in the low-frequency region are chosen as objective functions under different operation conditions of the vehicle.The results show that the impact of off-road terrains on the driver s ride comfort and health is clear under various conditions of deformable terrains and range of vehicle velocities.In particular,the driver s ride comfort is greatly affected by a soil terrain while the comfortable shake of the driver is strongly affected by a sand terrain.In addition,when the vehicle travels on a poor soil terrain in the frequency range below 4 Hz,more resonance peaks of acceleration PSD responses occurred than that on a rigid road of ISO 2631-1 level C.Thus,the driver s health is significantly affected by the deformable terrain in a low-frequency range.