Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake a...Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.展开更多
With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release meth...With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release method (SRM). At the same time, the Mohr-Coulomb Criterion is used to analyze stress changes around the tunnel induced by excavation. It shows that the surrounding soil around shallow tunnels can be partitioned by loosened zones (unloading zones) and plastic zones among which the shear stresses in the soil are less than 10 kPa below the M-C yield line. Both types of zones are separated. With the increasing of the SRR, the areas of plastic zones and loosen zones gradually increase. The surrounding soil is equally divided into 24 regions in order to study the influence of different grouting regions on the ground settlement. The reinforcing effect of grouting can be modeled by enhancement of the soil strength around the tunnel. By the approach of the SRM, numerical analysis indicates that, in the upper area (top of the surrounding soil about 210°), the reinforcing effect gradually decreases as the reinforcing region moves from arch springing to the vault of the crown; when reinforcing regions lie in the upside of the surrounding soil, the influence on the ground settlement is generally greater than in the lower part; at the same time, with the increase of the SRR, the influential differences are more and more obvious.展开更多
Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.H...Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.展开更多
基金supported by 973 Program,Grant No. 2008CB425802National Natural Science Foundation of Chinasupported by the Fundamental Research Funds for the Central Universities (SWJTU09ZT04)
文摘Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.
基金Supported by the National Natural Science Foundation of China(40272133) and Natural Science Foundation of Beijing(8022005, 8062007)
文摘With FLAC, a criteria of stress release ratio (SRR), i.e., about 10% of the relative difference of the ground settlement before and after the supporting system is installed, is incorporated into stress release method (SRM). At the same time, the Mohr-Coulomb Criterion is used to analyze stress changes around the tunnel induced by excavation. It shows that the surrounding soil around shallow tunnels can be partitioned by loosened zones (unloading zones) and plastic zones among which the shear stresses in the soil are less than 10 kPa below the M-C yield line. Both types of zones are separated. With the increasing of the SRR, the areas of plastic zones and loosen zones gradually increase. The surrounding soil is equally divided into 24 regions in order to study the influence of different grouting regions on the ground settlement. The reinforcing effect of grouting can be modeled by enhancement of the soil strength around the tunnel. By the approach of the SRM, numerical analysis indicates that, in the upper area (top of the surrounding soil about 210°), the reinforcing effect gradually decreases as the reinforcing region moves from arch springing to the vault of the crown; when reinforcing regions lie in the upside of the surrounding soil, the influence on the ground settlement is generally greater than in the lower part; at the same time, with the increase of the SRR, the influential differences are more and more obvious.
文摘Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.