Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world expe...Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.展开更多
Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, a...Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, among which effectively detecting CO2 from deep underground is one of engineering problems. This paper reviews monitoring techniques currently used during CO2 injection and storage. A method developed based on measuring seismic microtremors is of main interest. This method was first successfully used to characterize a site in this paper. To explore its feasibility in C02 storage monitoring, numerical simulations were conducted to investigate detectable changes in elastic wave signatures due to injection and geological storage of CO2. It is found that, although it is effective for shallow earth profile estimation, the surface wave velocity is not sensitive to the CO2 layer physical parameter variations,especially for a thin CO2 geological storage layer in a deep underground reservoir.展开更多
文摘Many problems in rock engineering are limited by our imperfect knowledge of the material properties and failure mechanics of rock masses. Mining problems are somewhat unique, however, in that plenty of real world experience is generally available and can be turned into valuable experimental data.Every pillar that is developed, or stope that is mined, represents a full-scale test of a rock mechanics design. By harvesting these data, and then using the appropriate statistical techniques to interpret them,mining engineers have developed powerful design techniques that are widely used around the world.Successful empirical methods are readily accepted because they are simple, transparent, practical, and firmly tethered to reality. The author has been intimately associated with empirical design for his entire career, but his previous publications have described the application of individual techniques to specific problems. The focus of this paper is the process used to develop a successful empirical method. A sixstage process is described: identification of the problem, and of the end users of the final product; development of a conceptual rock mechanics model, and identification of the key parameters in that model;identification of measures for each of the key parameters, and the development of new measures(such as rating scales) where necessary; data sources and data collection; statistical analysis; and packaging of the final product. Each of these stages has its own potential rewards and pitfalls, which will be illustrated by incidents from the author's own experience. The ultimate goal of this paper is to provide a new and deeper appreciation for empirical techniques, as well as some guidelines and opportunities for future developers.
基金the financial supports from the State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology (No. SKLGDUEK1002)the Fundamental Research Funds for the Central Government Supported Universities of Tongji University, China (No. 0270219037)
文摘Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, among which effectively detecting CO2 from deep underground is one of engineering problems. This paper reviews monitoring techniques currently used during CO2 injection and storage. A method developed based on measuring seismic microtremors is of main interest. This method was first successfully used to characterize a site in this paper. To explore its feasibility in C02 storage monitoring, numerical simulations were conducted to investigate detectable changes in elastic wave signatures due to injection and geological storage of CO2. It is found that, although it is effective for shallow earth profile estimation, the surface wave velocity is not sensitive to the CO2 layer physical parameter variations,especially for a thin CO2 geological storage layer in a deep underground reservoir.