微纳传感网是一个由大量不同类型的传感器节点(如传感、信息采集、处理、收发等)所组成的一种智能化的自治网络。由于传感网络必须高度灵敏自治,因此实现这种网络联接的技术和器件也必须非常精确。上世纪90年代末,美国率先开始了微纳传...微纳传感网是一个由大量不同类型的传感器节点(如传感、信息采集、处理、收发等)所组成的一种智能化的自治网络。由于传感网络必须高度灵敏自治,因此实现这种网络联接的技术和器件也必须非常精确。上世纪90年代末,美国率先开始了微纳传感技术的研究。先是应用于军事领域,然后被广泛地推广至各个领域:反恐、电力、交通、环保乃至家居生活以及更多。2003年美国《商业周刊》撰文描述说,IT时代正在从"Computer is the network"(电脑是网络)向"Sensor is展开更多
As a complementary to terrestrial mobile communication systems, mobile satellite communication system can fill the gaps that cannot be covered by terrestrial network, and provides an irreplaceable solution for emergen...As a complementary to terrestrial mobile communication systems, mobile satellite communication system can fill the gaps that cannot be covered by terrestrial network, and provides an irreplaceable solution for emergency communication in disaster. To pave the road for future satellite/terrestrial integrated communication networks, ITU-R invited proposals for candidate Radio Interface Technology(RIT) for the satellite component of International Mobile Telecommunications(IMT)-Advanced. China proposed the RIT of Long Term Evolution(LTE)-satellite as a candidate to be considered as IMT-Advanced satellite technology. The submitted LTE-satellite candidate RIT is specified based on terrestrial LTEAdvanced FDD standards that are developed in 3GPP. Considering satellite requirements, a number of modifications to LTE-Advanced are made to adapt to satellite radio transmission environments. This paper provides a general introduction of the new characteristics of LTEsatellite.展开更多
文摘微纳传感网是一个由大量不同类型的传感器节点(如传感、信息采集、处理、收发等)所组成的一种智能化的自治网络。由于传感网络必须高度灵敏自治,因此实现这种网络联接的技术和器件也必须非常精确。上世纪90年代末,美国率先开始了微纳传感技术的研究。先是应用于军事领域,然后被广泛地推广至各个领域:反恐、电力、交通、环保乃至家居生活以及更多。2003年美国《商业周刊》撰文描述说,IT时代正在从"Computer is the network"(电脑是网络)向"Sensor is
基金supported by National Science and Technology Major Project"Study on Mobile Satellite Baseband Chip"under Grant No.2013ZX03006004supported by National High Technology Research and Development Program (863 Program) "Research on the Key Technology for the Baseband Signal Processing for Onboard Payload"under Grant No.2012AA01A502+2 种基金the Tsinghua University Initiative Scientific Research Program"Key Technologies of Sky-Earth Integration Wireless Communication Network"under Grant No.2010THZ03supported by National High Technology Research and Development Program (863 Program) "Study and Verification of Satellite Mobile Communication System Wireless Transmission and Networking Technologies"under Grant No.2012AA01A506the Jiangsu Province’s Natural Science Foundation Program"Satellite Mobile Communication System Application Foundations"under Grant No.BK2011019
文摘As a complementary to terrestrial mobile communication systems, mobile satellite communication system can fill the gaps that cannot be covered by terrestrial network, and provides an irreplaceable solution for emergency communication in disaster. To pave the road for future satellite/terrestrial integrated communication networks, ITU-R invited proposals for candidate Radio Interface Technology(RIT) for the satellite component of International Mobile Telecommunications(IMT)-Advanced. China proposed the RIT of Long Term Evolution(LTE)-satellite as a candidate to be considered as IMT-Advanced satellite technology. The submitted LTE-satellite candidate RIT is specified based on terrestrial LTEAdvanced FDD standards that are developed in 3GPP. Considering satellite requirements, a number of modifications to LTE-Advanced are made to adapt to satellite radio transmission environments. This paper provides a general introduction of the new characteristics of LTEsatellite.