The impact of terrains on the precipitation of landfalling typhoon Talim (2005) over China's Mainland is investigated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Resear...The impact of terrains on the precipitation of landfalling typhoon Talim (2005) over China's Mainland is investigated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model. The simulated precipitation of simulated typhoon (the control) matches the observations closely. To compare with the control simulation, four sensitivity simulations were carried out in which terrains of Wuyi Mountain, Lushan, Dabieshan, and both Lushan and Dabieshan are completely removed respectively, but other surface properties were retained. It is found that the complex terrains of Wuyi Mountain, Lushan and Dabieshan have a significant impact on the rainfall intensity and distribution of Talim. As the terrains are removed, the rainfall is decreased very greatly and the rainfall in inland area is decreased much more than that in the coastal area. Besides, the rainfall distribution near the Lushan and Dabieshan is spread much more westward compared with the control simulation. Further analysis shows that the Wuyi Mountain would increase both the lower level air convergence and the upper level air divergence for Talim that just made landfall and thus it would contribute to the convection and increase rainfall intensity. It can be concluded that the terrains of Wuyi Mountain, Lushan and Dabieshan have obvious impacts on the Talim rainfall, and their impacts are different in various landfalling periods. The present study is a useful attempt to explore the influence of orography on the TCs in China's Mainland.展开更多
As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum ...As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.展开更多
Based on five basic assumptions, of the ground subsidence and collapse was using theoretical analysis method, the nature revealed from the mechanics point. Divided into four phases as groundwater level descent, soil c...Based on five basic assumptions, of the ground subsidence and collapse was using theoretical analysis method, the nature revealed from the mechanics point. Divided into four phases as groundwater level descent, soil cavity formation, soil cavity expansion, and ground collapse emersion, the whole process of ground subsidence and collapse was analyzed in detail. The study shows that ground subsidence and collapse is the macro- scopic performance and inevitable result of the soil cavity expansion and development, and the dynamic mechanics is the spalling force induced by the groundwater falling. The activities of underground water play a very important role in the process from the formation of soil cavity to the production of ground subsidence.展开更多
Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing...Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
Based on a RUSLE model, we identified the key factors of the impact on soil erosion induced by coal min- ing subsidence. We designed a method for predicting/.S factors of a mining subsidence basin, using ana- lytical ...Based on a RUSLE model, we identified the key factors of the impact on soil erosion induced by coal min- ing subsidence. We designed a method for predicting/.S factors of a mining subsidence basin, using ana- lytical GIS spatial technology. Using the Huainan mining area as an example, we calculated the modulus of erosion, its volume and classified the grade of soil erosion for both the original area and the subsidence basin. The results show that the maximum modulus of erosion and the volume of erosion of the subsi- dence basin without water logging would increase by 78% and 23% respectively compared with the ori- ginal situation. The edge of the subsidence basin, where the land subsidence was uneven, is subject to the greatest acceleration in soil erosion. In the situation of water logging after subsidence, the maximum modulus of erosion would decrease if the accumulated slope length were reduced. This maximum mod- ulus around the water logged area within the subsidence basin is equal to that without water logging, while the total volume of erosion decreases. Therefore, mining subsidence aggravates soil erosion espe- cially at the edge of basins where water and soil conservation measures should be taken.展开更多
Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimati...Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.展开更多
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m...A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.展开更多
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, incl...Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.展开更多
The long-term reclamation-induced ground subsidence in Macao, a coastal city of southern China was investigated. Persistent scatterer interferometry (PSI) technique was applied to retrieve the deformation rate in Maca...The long-term reclamation-induced ground subsidence in Macao, a coastal city of southern China was investigated. Persistent scatterer interferometry (PSI) technique was applied to retrieve the deformation rate in Macao during the period from April 2003 to August 2010 with a total of 41 scenes of descending ASAR data sets. The PSI-retrieved results show a relatively stable pattern in Macao Peninsula, Taipa Island and Coloane Island, with an average subsidence velocity of -3 mm/a. In contrast, relatively large subsidence rates are highlighted in Cotai area, a new reclamation land in 1990s, in which an average subsidence velocity is about -10 mm/a. A consistent relationship between the PSI results and the leveling measurements indicate that this PSI technique is an effective tool to monitor the reclamation-induced ground subsidence with a high accuracy and adequate spatial details. Accordingly, the valuable ground subsidence results generated by PSI can be used not only for early detection and remedial activities of potential settlement of building, but also for helping the local government to formulate regional sustainable development planning and decision-making in disaster prevention and mitigation.展开更多
基金State 973 Program (2009CB421505)National Natural Sciences Foundation of China (40405012+3 种基金 40830958 40705024)Ministry of Science and Technology of China (2005DIB3J104)Shanghai Typhoon Research Foundation (2009ST11)
文摘The impact of terrains on the precipitation of landfalling typhoon Talim (2005) over China's Mainland is investigated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model. The simulated precipitation of simulated typhoon (the control) matches the observations closely. To compare with the control simulation, four sensitivity simulations were carried out in which terrains of Wuyi Mountain, Lushan, Dabieshan, and both Lushan and Dabieshan are completely removed respectively, but other surface properties were retained. It is found that the complex terrains of Wuyi Mountain, Lushan and Dabieshan have a significant impact on the rainfall intensity and distribution of Talim. As the terrains are removed, the rainfall is decreased very greatly and the rainfall in inland area is decreased much more than that in the coastal area. Besides, the rainfall distribution near the Lushan and Dabieshan is spread much more westward compared with the control simulation. Further analysis shows that the Wuyi Mountain would increase both the lower level air convergence and the upper level air divergence for Talim that just made landfall and thus it would contribute to the convection and increase rainfall intensity. It can be concluded that the terrains of Wuyi Mountain, Lushan and Dabieshan have obvious impacts on the Talim rainfall, and their impacts are different in various landfalling periods. The present study is a useful attempt to explore the influence of orography on the TCs in China's Mainland.
文摘As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.
基金Supported by the National Natural Science Foundation of China(10702072)the Technology Innovation Fundation of China Coal Research Institute(2009CX01)
文摘Based on five basic assumptions, of the ground subsidence and collapse was using theoretical analysis method, the nature revealed from the mechanics point. Divided into four phases as groundwater level descent, soil cavity formation, soil cavity expansion, and ground collapse emersion, the whole process of ground subsidence and collapse was analyzed in detail. The study shows that ground subsidence and collapse is the macro- scopic performance and inevitable result of the soil cavity expansion and development, and the dynamic mechanics is the spalling force induced by the groundwater falling. The activities of underground water play a very important role in the process from the formation of soil cavity to the production of ground subsidence.
基金Under the auspices of Program of International S&T Cooperation (No. 2010DFA92400)Non-profit Industry Financial Program of the Ministry of Water Resources (No. 200901091)+2 种基金Beijing Municipal Natural Science Foundation (No. 8101002)Beijing Municipal Education Commission Plans to Focus Science and Technology Projects (No. KZ201010028030)National Natural Science Foundation of China (No. 41130744,41171335)
文摘Due to long-term over-exploitation of groundwater in Beijing Municipality, regional groundwater funnels have formed and land subsidence has been induced. By combining a groundwater monitoring network, GPS monitor- ing network data, radar satellite SAR data, GIS and other new technologies, a coupled process model based on the dy- namic variation of groundwater and the deformation response of land subsidence has been established. The dynamic variation of groundwater fimnels and the land subsidence response process were analyzed systematically in Beijing. Study results indicate that current groundwater funnel areas are distributed mainly in the southwest of Shunyi District, the northeast of Chaoyang District and the northwest of Tongzhou District, with an average decline rate of groundwa- ter level of 2.66 rn/yr and a maximum of 3.82 m/yr in the center of the funnels. Seasonal and interannual differences exist in the response model of land subsidence to groundwater funnels with uneven spatial and temporal distribution, where the maximum land subsidence rate was about --41.08 mm/yr and the area with a subsidence rate greater than 30 mm/yr was about 1637.29 km2. Although a consistency was revealed to exist between a groundwater funnel and the spatial distribution characteristics of the corresponding land subsidence funnel, this consistency was not perfect. The results showed that the response model of land subsidence to the dynamic variation of groundwater was more revealing when combining conventional technologies with InSAR, GIS, GPS, providing a new strategy for environmental and hydrogeological research and a scientific basis for regional land subsidence control.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金supported by the National Environ-mental Protection Specialized Fund for Commonwealth Industry(No.200809128)the Fundamental Research Funds for the Cen-tral Universities(No.2011RC37)
文摘Based on a RUSLE model, we identified the key factors of the impact on soil erosion induced by coal min- ing subsidence. We designed a method for predicting/.S factors of a mining subsidence basin, using ana- lytical GIS spatial technology. Using the Huainan mining area as an example, we calculated the modulus of erosion, its volume and classified the grade of soil erosion for both the original area and the subsidence basin. The results show that the maximum modulus of erosion and the volume of erosion of the subsi- dence basin without water logging would increase by 78% and 23% respectively compared with the ori- ginal situation. The edge of the subsidence basin, where the land subsidence was uneven, is subject to the greatest acceleration in soil erosion. In the situation of water logging after subsidence, the maximum modulus of erosion would decrease if the accumulated slope length were reduced. This maximum mod- ulus around the water logged area within the subsidence basin is equal to that without water logging, while the total volume of erosion decreases. Therefore, mining subsidence aggravates soil erosion espe- cially at the edge of basins where water and soil conservation measures should be taken.
基金Supported by Tianjin Land Subsidence Controlling Office(No.kJ/095).
文摘Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(2011YYL034) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method.
基金Under the auspices of National Natural Science Foundation of China(No.41201420,41130744)Beijing Nova Program(No.Z111106054511097)Foundation of Beijing Municipal Commission of Education(No.KM201110028016)
文摘Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.
基金Projects(41204012, 41274026, 41274024, 40825012, 41021003, 41174016) supported by the National Natural Science Foundation of China
文摘The long-term reclamation-induced ground subsidence in Macao, a coastal city of southern China was investigated. Persistent scatterer interferometry (PSI) technique was applied to retrieve the deformation rate in Macao during the period from April 2003 to August 2010 with a total of 41 scenes of descending ASAR data sets. The PSI-retrieved results show a relatively stable pattern in Macao Peninsula, Taipa Island and Coloane Island, with an average subsidence velocity of -3 mm/a. In contrast, relatively large subsidence rates are highlighted in Cotai area, a new reclamation land in 1990s, in which an average subsidence velocity is about -10 mm/a. A consistent relationship between the PSI results and the leveling measurements indicate that this PSI technique is an effective tool to monitor the reclamation-induced ground subsidence with a high accuracy and adequate spatial details. Accordingly, the valuable ground subsidence results generated by PSI can be used not only for early detection and remedial activities of potential settlement of building, but also for helping the local government to formulate regional sustainable development planning and decision-making in disaster prevention and mitigation.