A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films...A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.展开更多
A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium sha...A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.展开更多
The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morph...The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.展开更多
To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were invest...To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.展开更多
We have studied the effect of magnesia (MgO) addition (0, 5, 10, and 20 mol%) in zirconia at pH values (7, 9, 11). The magnesia doped zirconia (MgO-ZrO2) has been synthesized by a co-precipitation method using...We have studied the effect of magnesia (MgO) addition (0, 5, 10, and 20 mol%) in zirconia at pH values (7, 9, 11). The magnesia doped zirconia (MgO-ZrO2) has been synthesized by a co-precipitation method using ammonium hydroxide as a mineralizer. As-prepared samples were characterized by XRD, FE-SEM, and TG-DSC. The XRD results showed that the quantity of tetragonal phase was increased with increasing pH value during synthesis. On the other hand, a decrease in the crystallite size of tetragonal phase was observed with increasing pH value. Therefore, the FE-SEM micrograph showed a clear decline in the particle size with increasing pH value. As-precipitated at pH-11, the addition of 10 mol% of MgO showed nearly pure tetragonal phase with a crystallite size of-34.16 nm.展开更多
In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrench...In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrenches of the cone-shaped PSS and the formation mechanism of subtrenches were investigated. The profiles of patterns were characterized by FESEM (field emission scanning electron microscope). It showed that the subtrench size varied with the operating pressure and the RF bias power. As the operating pressure increased from 0.2 Pa to 0.9 Pa, the subtrenches changed from narrow and deep to wide and shallow; then to narrower and shallower. When the RF bias power varied from 200 W to 600 W, the subtrenches gradually became noticeable. The FESEM results also indicated that the subtrenches were formed due to the ion scattering effect which was caused by tapered sidewalls and charges accumulation. It is discovered that the scattering effect is closely related with the operating pressure and RF bias power.展开更多
By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or or...By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or orthorhombic phase of Gd F3 micro/nanocrystals have been synthesized based on a hydrothermal method. For comparison, the sample was also synthesized by a co-precipitation method. The samples were characterized by X-ray diffraction(XRD) patterns, field emission scanning electron microscopy(FE-SEM) images, energy-dispersive spectroscopy(EDS) spectra, and photoluminescence(PL) excitation and emission spectra. By host Gd3+ sensitizing, the Eu3+ presents relatively strong emissions. The energy transfers from host Gd3+ to doping Eu3+ are observed in all the samples and the energy transfer plays an important role in the emission of Eu3+. Acting as a probe, the Eu3+ presents its distinct optical properties in the samples.展开更多
文摘A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed.
基金Project(21271188) supported by the National Natural Science Foundation of China
文摘A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition(HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope(FE-SEM) with energy dispersive X-ray detector(EDX). Results show that the nucleation density is found to be up to 1010 cm-2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.
基金Projects(21171027,50872014) supported by the National Natural Science Foundation of ChinaProject(K1001020-11)supported by the Science and Technology Key Project of Changsha City,China
文摘The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.
基金the financial supports provided for this research by the Education Department of Liaoning Province of China(No.2009T061)the Ministry of Education of China(No.[2010]1561)
文摘To prepare potassium titanate catalyst, a novel citrate acid complex-combustion method using CH3COOK and Ti(OC4H9)4 as raw materials was developed. The crystalline phase and surface morphology of K2Ti205 were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The impact of some factors, such as the type of contact between K2Ti205 and soot, the content of water vapor and SO2 in exhaust, and the repeated use on catalytic activity of K2Ti205 were studied by temperature programmed reaction (TPR). A comparison between the new method and the reported ones on catalytic activity of potassium titanate was investigated. The results showed that K2Ti205 had high catalytic activity and good stability.
文摘We have studied the effect of magnesia (MgO) addition (0, 5, 10, and 20 mol%) in zirconia at pH values (7, 9, 11). The magnesia doped zirconia (MgO-ZrO2) has been synthesized by a co-precipitation method using ammonium hydroxide as a mineralizer. As-prepared samples were characterized by XRD, FE-SEM, and TG-DSC. The XRD results showed that the quantity of tetragonal phase was increased with increasing pH value during synthesis. On the other hand, a decrease in the crystallite size of tetragonal phase was observed with increasing pH value. Therefore, the FE-SEM micrograph showed a clear decline in the particle size with increasing pH value. As-precipitated at pH-11, the addition of 10 mol% of MgO showed nearly pure tetragonal phase with a crystallite size of-34.16 nm.
基金supported by the National Key Project of China (No. 2009ZX02037-005)
文摘In this paper, the cone-shaped patterned sapphire substrates (PSS) were etched by an inductively couple plasma with BCl 3 as the reacting gas. The influence of the operating pressure and the RF bias power on subtrenches of the cone-shaped PSS and the formation mechanism of subtrenches were investigated. The profiles of patterns were characterized by FESEM (field emission scanning electron microscope). It showed that the subtrench size varied with the operating pressure and the RF bias power. As the operating pressure increased from 0.2 Pa to 0.9 Pa, the subtrenches changed from narrow and deep to wide and shallow; then to narrower and shallower. When the RF bias power varied from 200 W to 600 W, the subtrenches gradually became noticeable. The FESEM results also indicated that the subtrenches were formed due to the ion scattering effect which was caused by tapered sidewalls and charges accumulation. It is discovered that the scattering effect is closely related with the operating pressure and RF bias power.
基金supported by the National Natural Science Foundation of China(Grant Nos.61205217,11204258,and 11464021)Natural Science Foundation of Jiangxi Province of China(Grant No.20142BAB202003)+5 种基金Foundation of Jiangxi Educational Committee of China(Grant Nos.GJJ14564 and GJJ14565)High-level Talent Project of Xiamen University of Technology(Grant No.YKJ14031R)Foreign Cooperation Project of Xiamen University of Technology(Grant No.E2014223007)National Science Foundation for Distinguished Young Scholars of Fujian Province(Grant No.2012J06024)the Outstanding Young Scientific Research Personnel Training Plan in Colleges and Universities of Fujian Province(Grant No.JA13229)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(Grant No.2013012655)
文摘By controlling the reactant ratios, hydrothermal time, hydrothermal temperatures, p H values of the prepared solutions, and the concentrations of K3C6H5O7·2H2O, 1 mol% Eu3+ doped cubic phase of K5Gd9F32 and/or orthorhombic phase of Gd F3 micro/nanocrystals have been synthesized based on a hydrothermal method. For comparison, the sample was also synthesized by a co-precipitation method. The samples were characterized by X-ray diffraction(XRD) patterns, field emission scanning electron microscopy(FE-SEM) images, energy-dispersive spectroscopy(EDS) spectra, and photoluminescence(PL) excitation and emission spectra. By host Gd3+ sensitizing, the Eu3+ presents relatively strong emissions. The energy transfers from host Gd3+ to doping Eu3+ are observed in all the samples and the energy transfer plays an important role in the emission of Eu3+. Acting as a probe, the Eu3+ presents its distinct optical properties in the samples.