Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain...Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan's mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan's mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.展开更多
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitio...Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.展开更多
基金the joint project "The Impact of the Transformation Process on Human-Environmental Interactions in Southern Kyrgyzstan" supported by the Volkswagen Foundation
文摘Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan's mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan's mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies.
基金Supported by the National Natural Science Foundation of China (No.40637034, No. 40574004), the National 863 Program of China (No. 2006AA12Z211).
文摘Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.