期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
大连九龙地磁台场地梯度的跟踪测量分析
1
作者 李勇 陈南 《防灾减灾学报》 2013年第4期59-62,共4页
介绍了大连九龙地磁监测中心建设过程中场地磁场梯度的跟踪测量情况。根据中国"地震及前兆数字观测技术规范"电磁部分的要求,在地磁台站建筑施工过程中,需要用质子旋进式磁力仪在施工现场对场地磁场背景进行监测。
关键词 地磁台站 场地梯度 跟踪测量
下载PDF
地下井体建设对地磁观测场地的干扰 被引量:1
2
作者 王晓睿 王淑辉 +2 位作者 刘允 张帅 代青沁 《地震地磁观测与研究》 2023年第2期112-118,共7页
以大连地震监测中心地震前兆观测新建地下井体为例,基于场地梯度测量方法,定量分析井体建设对地磁观测场地的干扰。基于观测井设计数据,计算其理论干扰距离,发现最大干扰距离s=456.6 m>270 m(二者的实际间距),推测此地下井体会对地... 以大连地震监测中心地震前兆观测新建地下井体为例,基于场地梯度测量方法,定量分析井体建设对地磁观测场地的干扰。基于观测井设计数据,计算其理论干扰距离,发现最大干扰距离s=456.6 m>270 m(二者的实际间距),推测此地下井体会对地磁观测产生干扰。以井体与地磁观测仪器室之间50 m×160 m的范围为测量区域,以10 m×10 m的网格进行测线及测点的布设,计算并对比分析井体建设前后各测线地磁总场强度F的梯度值,结果发现,除个别临近办公区的测点梯度值不稳定,其他测点梯度值基本处于重合状态,排除测量区域葡萄架和接线井的干扰后,磁场梯度整体符合规范,即ΔF_(b)≤1 nT/m。分析认为,地下井体对地磁场的最大干扰距离为160 m,表明该中心地下井体建设不会对地磁观测场地造成干扰。 展开更多
关键词 地磁观测场 场地梯度 井体干扰 干扰距离
下载PDF
磁通门仪器室建设要点
3
作者 刘旭东 侯永骏 《东北地震研究》 2002年第3期39-41,共3页
地磁观测条件的特殊性决定了仪器观测室建设具有难度。本文介绍了大连地震台按照《地震及前兆数字指导规范 (试行 )》
关键词 磁通门仪器室 场地梯度 地震前兆 防水 避雷 保温措施
下载PDF
地磁台消防优化改造项目对地磁观测环境的影响 被引量:2
4
作者 王晓睿 孙国涛 +1 位作者 高银鸿 原超 《防灾减灾学报》 2018年第2期56-62,共7页
2016年大连地震台瓦房店地磁台做了消防优化改造项目,新增加的建筑物对地磁场观测环境有干扰风险,为了规避影响,首先要对不确定是否具有磁性的建筑主材进行磁性检测,其次根据《地震台站观测环境技术要求》对含有磁性材料的用量和安全距... 2016年大连地震台瓦房店地磁台做了消防优化改造项目,新增加的建筑物对地磁场观测环境有干扰风险,为了规避影响,首先要对不确定是否具有磁性的建筑主材进行磁性检测,其次根据《地震台站观测环境技术要求》对含有磁性材料的用量和安全距离进行相互确认,最后进行的施工前后地磁场梯度的对比和消防补水系统的动态验证,证明了检测和计算结果有效。 展开更多
关键词 消防改造项目 地磁场观测 主材磁性 安全距离 场地梯度 动态干扰
下载PDF
Mountain Pastures and Grasslands in the SW Tien Shan,Kyrgyzstan-Floristic Patterns,Environmental Gradients,Phytogeography,and Grazing Impact 被引量:4
5
作者 BORCHARDT Peter SCHICKHOFF Udo +1 位作者 SCHEITWEILER Sabrina KULIKOV Maksim 《Journal of Mountain Science》 SCIE CSCD 2011年第3期363-373,共11页
Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain... Vast grasslands are found in the walnut-fruit forest region of southern Kyrgyzstan,Middle Asia.Located above the worldwide unique walnutfruit forests and used for grazing,they play a pivotal role in the mixed mountain agriculture of local farmers.Accordingly,these pastures are subject to an increasing utilization pressure reflecting the changing political and social conditions in the transformation process from a Soviet republic to an independent state.A first detailed analysis of mountain pasture vegetation in the Ferghana Range answers the following questions:What are the main plant community types among Kyrgyzstan's mountain pastures? What are the main environmental gradients that shape their species composition? Which phytogeographical distribution types are predominant? How does grazing affect community composition and species richness in these grasslands? Species composition was classified by cluster analysis;underlying environmental gradients were explored using DCA.A dataset of 395 relevés was used for classification,and a subset of 79 relevés was used in a DCA to analyze the correlation between vegetation,environment,and grazing impact.The investigated pastures were classified into four distinctive plant communities.The site factors altitude,heat load,inclination and grazing impact were found to be the major determinants of the vegetation pattern.A significant overlap between floristic composition and structural and spatial properties was shown.The majority of the species pool consisted of Middle Asian endemics and Eurosiberian species.However,disturbance-tolerant species played a significant role with respect to species composition and coverage of the herbaceous layer in vast areas of southern Kyrgyzstan's mountain pastures.In general,an intense grazing impact is clearly reflected by both species composition and structural variables of plant communities.The highly diverse and unique ecosystem is modified by an increasing utilization pressure.In order to maintain vital processes and functioning of this valuable ecosystem-in both economical and ecological terms-,it is indispensable to adopt appropriate pasture management strategies. 展开更多
关键词 Central Asia Classification ENDEMICS Gradient Analysis Grazing impact Middle Asia Pasture Management Ruderals Transformation Process Walnut-fruit forest.
下载PDF
Study on Recovering the Earth's Potential Field Based on GOCE Gradiometry
6
作者 SHEN Wenbin LI Jin LI Jiancheng WANG Zhengtao NING Jinsheng CHAO Dingbo 《Geo-Spatial Information Science》 2008年第4期273-278,共6页
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitio... Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process. 展开更多
关键词 GOCE gradiometry second radial gradients second radial gradient field recovery potential field recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部