The unique of using industrial LAN based on field bus to construct the system of vibration monitoring and fault diagnosis is introduced. The LAN topology, client/server architecture, database and designing of applicat...The unique of using industrial LAN based on field bus to construct the system of vibration monitoring and fault diagnosis is introduced. The LAN topology, client/server architecture, database and designing of application software for vibration monitoring and fault diagnosis are involved. How to apply industrial LAN to the vibration monitoring and fault diagnosis of turbo generator is discussed, and a scheme of how to construct the industrial LAN for vibration monitoring and fault diagnosis of turbo generator is presented.展开更多
Microchannel reactors are commonly used in micro-chemical technology. The performance of microreactors is greatly affected by the velocity field in the microchannel. The flow field is disturbed by the cylindrical etch...Microchannel reactors are commonly used in micro-chemical technology. The performance of microreactors is greatly affected by the velocity field in the microchannel. The flow field is disturbed by the cylindrical etch holes caused by air dust on the microchannel surface during its processing procedure. In this approach, a two-dimensional computational fluid dynamics (CFD) model is put forward to study the effect of etch holes on flow field. The influenced area of single or two concave etch holes is studied for the case of laminar flow. The hole diameter, the Reynolds number and the distance between the center of holes are found to have influences on the flow field. Numerical results indicate that the effects of etch hole on the flow field should be evaluated and the way of choosing the economic class of cleanroom for microreactor manufacture is presented.展开更多
Oil immersed power transformer is the main electrical equipment in power system.Its operation reliability has an important impact on the safe operation of power system.In the process of production,installation and ope...Oil immersed power transformer is the main electrical equipment in power system.Its operation reliability has an important impact on the safe operation of power system.In the process of production,installation and operation,its insulation structure may be damaged,resulting in partial discharge and even breakdown inside the transformer.In this paper,S9-M-100/10 oil immersed distribution transformer is taken as the research object,and the distribution laws of electromagnetic field and temperature field in transformer under normal operation,inter turn short circuit and inter layer short circuit are simulated and analyzed.The simulation results show that under normal conditions,the temperatures at the oil gap between the transformer core and the high and low voltage windings and the middle position of the high-voltage winding are high.When there are inter turn and inter layer short circuit faults,the electromagnetic loss of the fault part of the transformer increases,and the temperature rises suddenly.The influence of the two faults on the internal temperature field of the transformer is different,and the influence of the inter turn short circuit fault on the temperature nearby is obvious.The analysis results can provide reference for the thermal fault interpretation and fault classification of transformer.展开更多
By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in...By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in the study region. The results show that the recent tectonic stress field mainly presents the characteristics of near NWW-SSE maximum compressional stress and near NE-SW minimum extensional stress, while the stress regimes are mainly of strike slip, part of the reverse-fault type. Recent tectonic stress field in the region is characterized by horizontal components. The maximum principal compression stress direction was from NEE to SEE, the average principal compression stress direction was near NWW-SSE maximum compres- sional stress and near NE-SW minimum extensional. The recent tectonic stress field of the studied area can be controlled by a large tectonic stress area.展开更多
Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.Th...Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.The magnetic field was produced by permanent magnets that were assembled to make E×B drift away from, into and parallel to the sample surface, respectively.Magnetic flux density was adjusted at 120 mT, 180 mT and 240 mT respectively.By applying a negative bias voltage between the electrodes, the ...展开更多
Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capa...Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.展开更多
Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of criti...Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of critical times. In laboratory experiments, that the specimen enters the meta-instable is marked by accelerated stress release. Could we use the experimental result to identify the earthquake in natural conditions? Because the observational data from one station can only reflect the stress state beneath this station, the key problem for identification of the meta-instability is how to recognize regional stress state through observational data from many stations. In this work, we choose the evolution of the temperature field over varied deformation stages during a stick-slip event on a 5 bending fault as an example, and attempt to find the response features of the physical quantity when the fault enters the meta-instable state. We discuss the characteristics of stages for the stress build-up, stress-time process deviating from linearity before instability, meta-instability, instability, and post-instability, respectively. The result shows that the fault instability slide is a conversion process from independent activities of each fault segment to synergism activity. The instability implies completion of the synergism. The stage deviating from linearity is the onset of stress release, and it is also the onset of the synergism. At the meta-instability stages, stress release becomes dominant, while the synergism tends to finish. Therefore, the analysis of the regional overall stress state should not start from individual stations, and instead it should begin with the evolution of the whole deformation field.展开更多
文摘The unique of using industrial LAN based on field bus to construct the system of vibration monitoring and fault diagnosis is introduced. The LAN topology, client/server architecture, database and designing of application software for vibration monitoring and fault diagnosis are involved. How to apply industrial LAN to the vibration monitoring and fault diagnosis of turbo generator is discussed, and a scheme of how to construct the industrial LAN for vibration monitoring and fault diagnosis of turbo generator is presented.
基金Supported by the National Natural Science Foundation of China (20676093).
文摘Microchannel reactors are commonly used in micro-chemical technology. The performance of microreactors is greatly affected by the velocity field in the microchannel. The flow field is disturbed by the cylindrical etch holes caused by air dust on the microchannel surface during its processing procedure. In this approach, a two-dimensional computational fluid dynamics (CFD) model is put forward to study the effect of etch holes on flow field. The influenced area of single or two concave etch holes is studied for the case of laminar flow. The hole diameter, the Reynolds number and the distance between the center of holes are found to have influences on the flow field. Numerical results indicate that the effects of etch hole on the flow field should be evaluated and the way of choosing the economic class of cleanroom for microreactor manufacture is presented.
基金Science and Technology Project of State Grid Gansu Electric Power Company(No.52272219000Q)。
文摘Oil immersed power transformer is the main electrical equipment in power system.Its operation reliability has an important impact on the safe operation of power system.In the process of production,installation and operation,its insulation structure may be damaged,resulting in partial discharge and even breakdown inside the transformer.In this paper,S9-M-100/10 oil immersed distribution transformer is taken as the research object,and the distribution laws of electromagnetic field and temperature field in transformer under normal operation,inter turn short circuit and inter layer short circuit are simulated and analyzed.The simulation results show that under normal conditions,the temperatures at the oil gap between the transformer core and the high and low voltage windings and the middle position of the high-voltage winding are high.When there are inter turn and inter layer short circuit faults,the electromagnetic loss of the fault part of the transformer increases,and the temperature rises suddenly.The influence of the two faults on the internal temperature field of the transformer is different,and the influence of the inter turn short circuit fault on the temperature nearby is obvious.The analysis results can provide reference for the thermal fault interpretation and fault classification of transformer.
文摘By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in the study region. The results show that the recent tectonic stress field mainly presents the characteristics of near NWW-SSE maximum compressional stress and near NE-SW minimum extensional stress, while the stress regimes are mainly of strike slip, part of the reverse-fault type. Recent tectonic stress field in the region is characterized by horizontal components. The maximum principal compression stress direction was from NEE to SEE, the average principal compression stress direction was near NWW-SSE maximum compres- sional stress and near NE-SW minimum extensional. The recent tectonic stress field of the studied area can be controlled by a large tectonic stress area.
基金Supported by National Natural Science Foundation of China (No.50777048)
文摘Epoxy resin laminate onto which a pair of copper foil was printed was employed as test samples.The samples were placed in an artificial atmospheric chamber, which was vacuumed by a rotary pump from 100 kPa to 5 kPa.The magnetic field was produced by permanent magnets that were assembled to make E×B drift away from, into and parallel to the sample surface, respectively.Magnetic flux density was adjusted at 120 mT, 180 mT and 240 mT respectively.By applying a negative bias voltage between the electrodes, the ...
文摘Fault Ride-Through (FRT) capabilities set up according to the grid codes may affect the performance of related protective elements during fault periods. Therefore, in this paper the coordination between the FRT capability and over-current protection of DFIG Wind Generators in MV networks is investigated. Simulation test cases using MATLAB-Simulink are implemented on a 365-MW wind farm in AL-Zaafarana, Egypt. The simulation results show the influence of the FRT capability on the protective relaying coordination in wind farms, showing that the FRT may work in situations where is were expected not to work, and then disabling the over-current protection, which should have worked in this situation.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40872129, 41172180)
文摘Identification of the meta-instable stress state and study of its mechanism and evolution of relevant physical fields would be of great significance for determination of potential seismic risks and estimation of critical times. In laboratory experiments, that the specimen enters the meta-instable is marked by accelerated stress release. Could we use the experimental result to identify the earthquake in natural conditions? Because the observational data from one station can only reflect the stress state beneath this station, the key problem for identification of the meta-instability is how to recognize regional stress state through observational data from many stations. In this work, we choose the evolution of the temperature field over varied deformation stages during a stick-slip event on a 5 bending fault as an example, and attempt to find the response features of the physical quantity when the fault enters the meta-instable state. We discuss the characteristics of stages for the stress build-up, stress-time process deviating from linearity before instability, meta-instability, instability, and post-instability, respectively. The result shows that the fault instability slide is a conversion process from independent activities of each fault segment to synergism activity. The instability implies completion of the synergism. The stage deviating from linearity is the onset of stress release, and it is also the onset of the synergism. At the meta-instability stages, stress release becomes dominant, while the synergism tends to finish. Therefore, the analysis of the regional overall stress state should not start from individual stations, and instead it should begin with the evolution of the whole deformation field.