Based on fuzzy integrated evaluation theory, the safety of coal industry was analyzed, the factors affecting the safety of coal industry was considered, and its fuzzy in- tegrated estimating theory and results were gi...Based on fuzzy integrated evaluation theory, the safety of coal industry was analyzed, the factors affecting the safety of coal industry was considered, and its fuzzy in- tegrated estimating theory and results were given. Finally this paper proposed a new method of industry safety estimation. According to this method, we can integrate the fac- tors affecting coal industry and deal with the parameters and targets of evaluating factors by quantitative analysis, thus give a scientific and reasonable safety degree analyzing evaluation.展开更多
In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is ...In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.展开更多
We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis...We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.展开更多
文摘Based on fuzzy integrated evaluation theory, the safety of coal industry was analyzed, the factors affecting the safety of coal industry was considered, and its fuzzy in- tegrated estimating theory and results were given. Finally this paper proposed a new method of industry safety estimation. According to this method, we can integrate the fac- tors affecting coal industry and deal with the parameters and targets of evaluating factors by quantitative analysis, thus give a scientific and reasonable safety degree analyzing evaluation.
文摘In this article, we considers the thermodynamics analysis of creeping viscous nanofluid flow in a horizontal ciliated tube under the effects of a uniform magnetic field and porous medium. Moreover, energy analysis is performed in the presence of an internal heat source and thermal radiation phenomena. The thermal conductivity of base fluid water is strengthened by considering the carbon nanotubes (CNTs). Mathematical formulation operated, results in a set of non-linear coupled partial differential equations. The governed differential system is transformed into an ordinary differential system by considering suitable similarity variables. Exact solutions in the closed form are computed for the temperature, momentum and pressure gradient profiles. In this study, special attention is devoted to the electrical conductivity of the CNTs. Streamlines patterns are also discussed to witness the flow lines for different parameters. Thermodynamics analysis shows that entropy of the current flow system is an increasing function of Brinkmann number, magnetic parameter, nanoparticle concentration parameter and Darcy number.
文摘We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.