期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进场景坐标回归网络的室内相机重定位方法 被引量:1
1
作者 王静 胡少毅 +1 位作者 郭苹 金玉楚 《计算机工程与应用》 CSCD 北大核心 2023年第15期160-168,共9页
传统相机重定位依赖手工特征,场景的变化会影响其后续特征匹配,导致算法总体性能下降。然而,基于深度学习场景坐标回归的相机重定位方法在室内场景下有着较好的表现。针对复杂场景下定位精度低以及在特征提取过程中空间信息丢失的问题,... 传统相机重定位依赖手工特征,场景的变化会影响其后续特征匹配,导致算法总体性能下降。然而,基于深度学习场景坐标回归的相机重定位方法在室内场景下有着较好的表现。针对复杂场景下定位精度低以及在特征提取过程中空间信息丢失的问题,在场景坐标回归方法的基础上,提出一种基于深度过参化卷积与细粒度信息的相机定位方法。该方法在特征提取网络中,引入深度过参化卷积层取代传统的卷积层,使提取的特征更具有鲁棒性;在特征提取网络之后,增加细粒度信息,加强特征提取,解决特征提取带来的空间信息丢失问题;通过全连接层输出场景坐标,建立二维图像像素和三维场景坐标之间的关系,然后使用多点透视随机抽样一致性算法得到相机位姿。实验结果表明,改进后的方法与同类型算法相比有明显的提升,该方法能够将平均角度精度提高20.00%,对相机重定位有显著效果,验证了该方法在一定程度上能够克服视觉特征对相机重定位的影响。 展开更多
关键词 相机重定位 相机位姿 场景坐标回归 细粒度信息 特征提取
下载PDF
基于深度学习的相机位姿估计方法综述 被引量:4
2
作者 王静 金玉楚 +1 位作者 郭苹 胡少毅 《计算机工程与应用》 CSCD 北大核心 2023年第7期1-14,共14页
相机位姿估计是指在已知环境下精确地估计相机在世界坐标系中六自由度位姿的技术,该技术是机器人技术和自动驾驶中的关键技术。随着深度学习的飞速发展,使用深度学习来优化相机位姿估计算法已经成为了当前的研究热点之一。为了掌握目前... 相机位姿估计是指在已知环境下精确地估计相机在世界坐标系中六自由度位姿的技术,该技术是机器人技术和自动驾驶中的关键技术。随着深度学习的飞速发展,使用深度学习来优化相机位姿估计算法已经成为了当前的研究热点之一。为了掌握目前相机位姿估计算法的研究现状与趋势,对基于深度学习的相机位姿估计的主流算法进行了综述。简单介绍了传统的基于特征点的相机位姿估计方法。重点介绍了基于深度学习的方法:根据核心算法的不同,从端到端的相机位姿估计、场景坐标回归、基于检索的相机位姿估计、层级结构、多信息融合和跨场景的相机位姿估计六个方面进行了详细的阐述和分析。对研究现状进行了总结,并基于深入的性能分析指出了相机位姿估计领域面临的挑战,展望了其发展动向。 展开更多
关键词 深度学习 相机位姿估计 场景坐标回归 多信息融合
下载PDF
轻量化视觉定位技术综述
3
作者 叶翰樵 刘养东 申抒含 《中国图象图形学报》 2024年第10期2880-2911,共32页
视觉定位旨在从已知的三维场景中恢复当前观测图像的相机位姿。视觉定位技术具备低成本、高精度和易于集成等优势,是实现计算设备与真实世界建立智能交互过程的关键技术之一,如今获得了混合现实、自动驾驶等应用领域的广泛关注。作为计... 视觉定位旨在从已知的三维场景中恢复当前观测图像的相机位姿。视觉定位技术具备低成本、高精度和易于集成等优势,是实现计算设备与真实世界建立智能交互过程的关键技术之一,如今获得了混合现实、自动驾驶等应用领域的广泛关注。作为计算机视觉领域长期探索的基础任务之一,视觉定位方法至今已取得显著的研究进展,然而现有方法普遍存在计算开销和存储占用过大等不足,这些问题导致视觉定位在移动端的高效部署和场景模型的更新维护方面存在困难,并因此在很大程度上限制着视觉定位技术的实际应用。针对这一问题,部分研究工作开始聚焦于推动视觉定位技术的轻量化发展。轻量化视觉定位旨在研究更加高效的场景表达形式及其视觉定位方法,目前正逐渐成为视觉定位领域重要的研究方向。本文首先回顾早期视觉定位框架,随后从场景表达形式的角度对具备轻量化特性的现有视觉定位研究工作进行分类。在各个方法类别下,分析总结其特点优势、应用场景和技术难点,并同时介绍代表性成果。进一步地,本文对部分轻量化视觉定位的代表性方法在常用室内外数据集上的性能表现进行对比分析,评估指标主要包含离线建图的用时、场景地图的存储占用和定位精度3个维度。现有的轻量化视觉定位技术仍然面临着诸多的难题与挑战,场景模型的表达能力、定位方法的泛化性与鲁棒性尚存在较大的提升空间。最后,本文对轻量化视觉定位未来的发展趋势进行分析与展望。 展开更多
关键词 视觉定位 相机位姿估计 三维场景表达 轻量化地图 特征匹配 场景坐标回归 位姿回归
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部