The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demons...The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demonstrates that the effective surface doping concentration and the interface state density of the pocket or halo region are interface states R G current peak position dependent and amplitude dependent,respectively.It can be expressed quantitatively according to the device physics knowledge,thus,the direct characterization of the interface state density and the effective surface doping concentration of the pocket or halo becomes very easy.展开更多
We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the c...We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The, dynamic equations of such a system are derived by using the technique of quantum Laugevin opera.tots, and then arre studied numerically under different driving" conditions, The results show that trader certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic populations, atomic coherences, and injected classical field, stable and bistable states. Chaos can be inhibited by atomic In ,addition, no chaos occurs in optical bista.bility.展开更多
The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration...The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration field, and residual coal temperature field was established with nitrogen injection in goat'. Then the software of numerical computation was pro- grammed by Finite Volume Method. Combined with the example, the distributions of air flow field, oxygen concentration field and residual coal temperature field at different nitrogen injection volume were obtained by the software. The results show that the nitrogen injection could effectively prevent the spontaneous combustion fire in goaf and the highest temperature in goaf decreased with the nitrogen injection volume increasing. Finally, the accuracy of the numerical simulation was verified by the temperature observation in field. The achievement of this research is of theoretical and practical significance for the prevention of coal spontaneous combustion in goaf.展开更多
In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible t...In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible traps and defects induced by ions implantation in the gate-oxide and their further impacting on the sensitivity and dose range of RADFETs were analyzed qualitatively. Our devices had the dry/wet/dry sandwich gate-oxide of 420 nm thick. Different ion-implanting doses and post-annealing temperatures were carried out during the RADFETs fabrication. We built a real time auto-measurement system to realize the auto-state-switch between irradiation and read-out modes, and in-situ measurement of output voltage for ten devices in turn at once of radiation experiment. The threshold voltage, dose range and sensitivity of RADFETs were extracted and analyzed in detail. The results showed that the highest sensitivity of 229 mV/Gy achieved when the implant dose was2.2×1011 cm.2 and the post-annealing temperature was 1000°C, and the dose range of 34 Gy as well.展开更多
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moment...Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.展开更多
文摘The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demonstrates that the effective surface doping concentration and the interface state density of the pocket or halo region are interface states R G current peak position dependent and amplitude dependent,respectively.It can be expressed quantitatively according to the device physics knowledge,thus,the direct characterization of the interface state density and the effective surface doping concentration of the pocket or halo becomes very easy.
基金The project partially supported by Natural Science Foundation of Jiangsu Province of China under Grant No. BK2005062
文摘We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The, dynamic equations of such a system are derived by using the technique of quantum Laugevin opera.tots, and then arre studied numerically under different driving" conditions, The results show that trader certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic populations, atomic coherences, and injected classical field, stable and bistable states. Chaos can be inhibited by atomic In ,addition, no chaos occurs in optical bista.bility.
基金Supported by the National Natural Science Foundation of China (51174211)
文摘The numerical simulation is used to research the influence of nitrogen injection on spontaneous combustion in goaf. The spontaneous combustion mathematical model on the coupling of air flow field, oxygen concentration field, and residual coal temperature field was established with nitrogen injection in goat'. Then the software of numerical computation was pro- grammed by Finite Volume Method. Combined with the example, the distributions of air flow field, oxygen concentration field and residual coal temperature field at different nitrogen injection volume were obtained by the software. The results show that the nitrogen injection could effectively prevent the spontaneous combustion fire in goaf and the highest temperature in goaf decreased with the nitrogen injection volume increasing. Finally, the accuracy of the numerical simulation was verified by the temperature observation in field. The achievement of this research is of theoretical and practical significance for the prevention of coal spontaneous combustion in goaf.
基金supported by the National Basic Research Program of China(Grant No.2015CB352100)
文摘In this work, we studied on the boron-ions implantation, including the implant dose and post-annealing temperature on the performance of PMOS radiation field-effect transistors(RADFETs) in experimental. The possible traps and defects induced by ions implantation in the gate-oxide and their further impacting on the sensitivity and dose range of RADFETs were analyzed qualitatively. Our devices had the dry/wet/dry sandwich gate-oxide of 420 nm thick. Different ion-implanting doses and post-annealing temperatures were carried out during the RADFETs fabrication. We built a real time auto-measurement system to realize the auto-state-switch between irradiation and read-out modes, and in-situ measurement of output voltage for ten devices in turn at once of radiation experiment. The threshold voltage, dose range and sensitivity of RADFETs were extracted and analyzed in detail. The results showed that the highest sensitivity of 229 mV/Gy achieved when the implant dose was2.2×1011 cm.2 and the post-annealing temperature was 1000°C, and the dose range of 34 Gy as well.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322101,51231004 and 51571128)the Ministry of Science and Technology of China(Grant No.2014AA032904)
文摘Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.