期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
基于GMS地下水场流数值模拟分析
1
作者 李佳 时满 +1 位作者 朱百泉 祝明 《云南化工》 CAS 2017年第4期58-60,共3页
介绍了地下水场流的数值模拟的研究情况,根据项目建设区的地质情况利用GMS6.0地下水模拟系统软件进行模型,将研究区进行划分界定边界,计算得到了区域的均衡要素,通过多次对模型的修正,提高了模型模拟的精度,可以用于地下水污染的情景预测。
关键词 GMS 地下水 场流模拟 模型
下载PDF
Numerical and experimental studies of flow field in hydrocyclone with air core 被引量:12
2
作者 崔宝玉 魏德洲 +2 位作者 高淑玲 刘文刚 Yu-qing FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2642-2649,共8页
For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out res... For the flow field in a d50 mm hydrocyclone, numerical studies based on computational fluid dynamics (CFD) simulation and experimental studies based on particle image velocimetry (PIV) measurement were carried out respectively. The results of two methods show that air core generally forms after 0.7 s, the similar characteristics of air core can be observed. Vortexes and axial velocity distributions obtained by numerical and experimental methods are also in good agreement. Studies of different parameters based on CFD simulation show that tangential velocity distribution inside the hydrocyclone can be regarded as a combined vortex. Axial and tangential velocities increase as the feed rate increases. The enlargement of cone angle and overflow outlet diameter can speed up the overflow discharge rate. The change of underflow outlet diameter has no significant effect on axial and tangential velocities. 展开更多
关键词 HYDROCYCLONE computational fluid dynamics particle image velocimetry flow field air core
下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
3
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
下载PDF
Phase-field simulations of forced flow effect on dendritic growth perpendicular to flow 被引量:4
4
作者 王智平 王军伟 +2 位作者 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期612-617,共6页
The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and ther... The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result. 展开更多
关键词 phase-field method laminar flow dendritic growth computer simulation SOLIDIFICATION flow velocity
下载PDF
Laser Measurement and Intensity Evaluation of Intake Swirl in Engine Using a Water Analog 被引量:4
5
作者 孙柏刚 李向荣 杜巍 《Journal of Beijing Institute of Technology》 EI CAS 2000年第4期391-396,共6页
The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simul... The intake swirl in the cylinder was induced by a swirler which was fixed in one of two intake ports. In order to understand the characteristics of the intake swirl, a transparent water analog was designed which simulated 150 type single cylinder engine. At the same time, the particle image velocimetry was used to measure the flow fields induced by various swirlers in the analog. After measurement, a new method was presented to evaluate the intensity of the intake swirl. Then, when the measured sections, the lifts of valve and the swirlers were different, the calculated results of the flow field were compared. 展开更多
关键词 diesel engine intake swirl water analog particle image velocimetry MEASUREMENT
下载PDF
Effects of static magnetic fields on melt flow in detached solidification 被引量:3
6
作者 彭岚 龚欢 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期936-943,共8页
A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Nume... A series of three-dimensional numerical computations were conducted to understand the effects of different static magnetic fields on thermal fluctuation and melt flow during the detached solidification of CdZnTe. Numerical calculations were carried out by three different configurations of magnetic field: without magnetic field, with an axial magnetic field (AMF) and with a cusp-shaped magnetic field (CMF). The results reveal that the magnetic fields can effectively suppress the melt flow and thermal fluctuation and the suppression effect of the AMF is stronger than that of the CMF. Besides, the physical mechanism of thermocapillary?buoyancy convection instability was discussed and the effects of magnetic field on the critical Marangoni number were also obtained. 展开更多
关键词 detached solidification static magnetic field thermocapillary-buoyancy convection numerical simulation CDZNTE
下载PDF
Optimization of operating conditions and structure parameters of zinc electrolytic cell based on numerical simulation for electrolyte flow 被引量:4
7
作者 李昊岚 胡杰 +2 位作者 周萍 魏文武 苏寅彪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1604-1609,共6页
The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two... The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two circulations at the surface flow where part of electrolyte backflows to the inlet from the side of cell, and the rest flows directly to the outlet, and the separation of two circulations with opposite direction occurs at the 20th pair of anode-cathode. This phenomenon was observed in the real operation. The electrolyte flows into the space between anode and cathode from the side portion of the cell. Meanwhile, the interelectrode effective flow rate (IEFR) is put forward to describe quantitively the flow field characteristics and is defined as the ratio of electrolyte flow between the anode and cathode to the total flow area. The influences of structure parameters and operating conditions on IEFR, such as the inlet angle, the volumetric flow rate, the inlet position and the height of steel baffles were simulated. The inlet position has a significant influence on the IEFR and its optimal value is 0.9 m below free surface. The inlet angle should be in the range from -10° to 10°. IEFR is in linear proportion with the volumetric flow rate, and the height of the steel baffle has little influence on the flow field. 展开更多
关键词 zinc electrolytic cell flow field OPTIMIZATION numerical simulation
下载PDF
Numerical Simulation and Analysis of Gas Flow Field in Serrated Valve Column 被引量:12
8
作者 王良华 崔觉剑 姚克俭 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期541-546,共6页
A three-dimensional computational fluid dynamics (CFD) model for gas flow through a serrated valve tray was presented. The flow field, as well as the dry-pressure drop of the valve under the full-opening condition w... A three-dimensional computational fluid dynamics (CFD) model for gas flow through a serrated valve tray was presented. The flow field, as well as the dry-pressure drop of the valve under the full-opening condition was simulated based on the proposed model by using FLUENT 6.0 software. Compared with the values of dry-pressure dro.p in different turbulent models, the.simulated.results using RNG κ-ε model are in reasonable agreement with experimental data, indicating that RNG κ-ε model is suitable in simulating gas flow through the serrated valve tray. Then the CFD model combining RNG κ-ε model was used to study the three-dimensional gas flow through the considered serrated valve tray. The simulated results showed that various eddies existed on the serrated valve tray, and both the eddy and the non-eddy areas were nearly equal. The existence of addendum can decrease the eddy area caused by gas passing through the lateral outlet slots. The size of eddies can be reduced by optimizing the distance between valves. 展开更多
关键词 serrated valve numerical simulation pressure drop RNG κ-ε turbulent model
下载PDF
Numerical Study of Solid-Liquid Two-Phase Flow in StirredTanks with Rushton Impeller(Ⅱ) Prediction of Critical Impeller Speed 被引量:13
9
作者 王峰 毛在砂 沈湘黔 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期599-609,共11页
Three-dimensional solid-liquid flow is mathematically formulated by means of the 'two-fluid' approach and the two-phase k-ε-AP turbulence model. The turbulent fluctuation correlations appearing in the Reynold... Three-dimensional solid-liquid flow is mathematically formulated by means of the 'two-fluid' approach and the two-phase k-ε-AP turbulence model. The turbulent fluctuation correlations appearing in the Reynolds time averaged governing equations are fully incorporated. The solid-liquid flow field and solid concentration distribution in baffled stirred tanks with a standard Rushton impeller are numerically simulated using an improved 'inner-outer'iterative procedure. The flow pattern is identified via the velocity vector plots and a recirculation loop with higher solid concentration is observed in the central vicinity beneath the impeller. Comparison of the simulation with experimental data on the mean velocities and the turbulence quantities of the solid phase is made and quite reasonable agreement is obtained except for the impeller swept volume. The counterpart of liquid phase is presented as well.The predicted solid concentration distribution for three experimental cases with the average solid concentration up to 20% is also found to agree reasonably with the experimental results published in the literature. 展开更多
关键词 stirred tank solid-liquid flow two-fluid model inner-outer iterativeprocedure numerical simulation
下载PDF
Flow field simulation and establishment for mathematical models of flow area of spool valve with sloping U-shape notch machined by different methods 被引量:10
10
作者 王兆强 顾临怡 +2 位作者 冀宏 陈家旺 李林 《Journal of Central South University》 SCIE EI CAS 2014年第1期140-150,共11页
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not... Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character. 展开更多
关键词 spool valve flow field simulation flow area steady state flow force mathematical model sloping U-shape notch
下载PDF
Simulation on microstructure evolution of Al-Si alloy under effect of natural convection during solidification 被引量:5
11
作者 Zhen-hong WANG Li-tong ZHANG +1 位作者 Bin SU Xiao-peng ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期79-90,共12页
The solidification microstructure of Al-Si alloy was observed in the experiment,the second dendrite arm spacing(SDAS)was measured,and the effect of temperature on the microstructure was analyzed.Phase-field(PF)model i... The solidification microstructure of Al-Si alloy was observed in the experiment,the second dendrite arm spacing(SDAS)was measured,and the effect of temperature on the microstructure was analyzed.Phase-field(PF)model incorporating natural convection caused by gravity was employed to simulate the microstructure evolution of Al-Si alloy under the experimental conditions.Good agreements between the experimental and simulation results verified the reliability of the simulation approach proposed in this study.Based on the proposed model,a series of simulation cases(2D and 3D)were performed to investigate the evolution of columnar and equiaxed dendritic structures.It was found that the solute content of the alloy had little impact on the microstructure evolution,while the solute expansion coefficient had obvious effect on the dendrite tip velocities.Significant improvement of computational efficiency was achieved via novel algorithms,making it possible to perform massive simulation for studying the evolution of solidification microstructures,which is hard to be directly observed in experiments via synchrotron radiation for Al-Si alloy. 展开更多
关键词 Al-Si alloy solidification microstructure natural convection phase-field simulation
下载PDF
Computational Fluid-dynamics of Liquid Phase Flow on Distillation Column Trays 被引量:5
12
作者 刘春江 袁希钢 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第5期517-521,共5页
The liquid flow on a single-pass sieve distillation tray is simulated with a three-dimensional computational fluid dynamics (CFD) program with the K-ε turbulence model. In the model, a source term SMi is formulatedin... The liquid flow on a single-pass sieve distillation tray is simulated with a three-dimensional computational fluid dynamics (CFD) program with the K-ε turbulence model. In the model, a source term SMi is formulatedin the Navier-Stokes equations to represent the interfacial momentum transfer and another term Sc is added to themass transfer equation as the source of interfacial mass transfer. The simulation provides the detailed informationof the three-dimensional distribution of liquid velocity on the tray, the circulation area and the concentration profilealong the height of liquid layer. 展开更多
关键词 computational fluid dynamics DISTILLATION circulation area sieve tray
下载PDF
Study on partition of spontaneous combustion danger zone and prediction of self-ignition in coalmine based on numeric simulation 被引量:8
13
作者 张辛亥 席光 《Journal of Coal Science & Engineering(China)》 2006年第1期56-59,共4页
By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as w... By solving steady model of air flow diffusion and chemical reaction in loose coal, distribution of oxygen concentration and flow velocity magnitude were obtained. Compared the simulating results with critic value as well as duration of spontaneous combustion from large-scale spontaneous combustion experiment, 'three zones' of spontaneous combustion were partitioned and mining conditions to avoid spontaneous combustion were obtained. The above method was employed to partition 'three zones' in gob of fully mechanized top-coal caving long wall face and got fairly good result. Calculation of the above method is much smaller than simulating the whole process of coal spontaneous combustion, but the prediction precision can satisfy the demand of predicting and extinguishing spontaneous combustion in mining. 展开更多
关键词 coal seam spontaneous combustion PREDICTION numeric simulation flow field
下载PDF
Numerical simulation of the flow field in a dense-media cyclone 被引量:14
14
作者 SHEN Li-juan HU Yan-feng +2 位作者 CHEN Jian-zhong ZHANG Peng DAI Hua-zhen 《Mining Science and Technology》 EI CAS 2009年第2期225-229,共5页
An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached:th... An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached:the tangential velocity tends to increase when moving from the center toward the exterior.The velocity then begins to decrease when the maximum velocity point is reached.The velocity field divides into two different sections;an inner swirling zone and an outer swirling zone.The axial velocity points down at the wall and gradually decreases toward the bottom.Continuing toward the bottom,the axial velocity passes through zero and then gradually increases in the opposite direction.In the cyclone's central zone,the pressure is negative and the suction of air allows an air column to be formed therein.At the center of the radial negative zone the pressure drops to its lowest value—phenomenon that has been verified by theoretical analysis.Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles. 展开更多
关键词 CYCLONE numerical simulation tangential velocity axial velocity pressure filed
下载PDF
Experimental study on the goaf flow field of the ‘‘U+I” type ventilation system for a comprehensive mechanized mining face 被引量:9
15
作者 Yu Zhaoyang Yang Shengqiang +2 位作者 Qin Yi Hu Xincheng Cheng Jianwei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期1003-1010,共8页
"U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the min... "U" and "U+I" type ventilation experiments were performed on a three-dimensional fully mechanized caving face simulation experimental platform. The distribution laws of the pressure field and gas field in the mine goal were obtained. Results show that the flow field in the goaf is generally asymmetric; the location of the gas accumulation area changes with ventilation parameters and can be used as an evaluation indicator to study the air leakage extent in the goal. Hence, drainage pipes buried in the goaf to intensively extract gas can be designed in such gas areas, which can give considerations in both improving gas drainage efficiency and reducing air leakage. By comparing the gas extraction effect of model experiments with that of on-site underground practices, the basic laws are commonly consistent according to comparative analysis. Thus the experimental results can be used to guide the application of underground gas prevent!o_n_and.control.. 展开更多
关键词 Goaf flow fieldInner interlocked tail roadwayPressure fieldGas fieldGas center areaVentilation-air-methane efficiency
下载PDF
Numerical simulation on turbulent flow field in convergentdiveroent nozzle 被引量:4
16
作者 LU Yi-yu LIU Yongc LI Xiao-hong KANG Yong ZHAO Jian-xin 《Journal of Coal Science & Engineering(China)》 2009年第4期434-439,共6页
Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow fi... Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet. 展开更多
关键词 numerical simulation convergent-divergent nozzle turbulent flow field cavitation water jet cavitating effect
下载PDF
Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field 被引量:14
17
作者 汪彬 杨院生 +1 位作者 马晓平 童文辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期283-288,共6页
The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pu... The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pulsed magnetic field and the average grain size is refined to 260?? under the optimal processing conditions.A mathematical model was built to describe the interaction of the electromagnetic-flow fields during solidification with ANSYS software.The pulsed electric circuit was first solved and then it is substituted into the magnetic field model.The fluid flow model was solved with the acquired electromagnetic force.The effects of pulse voltage frequency on the current wave and on the distribution of magnetic and flow fields were numerically studied.The pulsed magnetic field increases melt convection,which stirs and fractures the dendritic arms into pieces.These broken pieces are transported into the bulk liquid by the liquid flow and act as nuclei to enhance grain refinement.The Joule heat effect produced by the electric current also participates in the microstructural refinement. 展开更多
关键词 pulsed magnetic field numerical simulation pure Mg microstructure refinement
下载PDF
Effects of Gas Flow Field on Clogging Phenomenon in Close-Coupled Vortical Loop Slit Gas Atomization 被引量:3
18
作者 ZHANG Min ZHANG Zhaoming +2 位作者 ZHANG Yanqi LU Yuanjing LU Lin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期1003-1019,共17页
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu... In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance. 展开更多
关键词 vortical loop slit atomizer annular slit width atomization gas pressure melt delivery tube protrusion length gas flow field numerical simulation
下载PDF
Analysis of a Propeller Wake Flow Field Using Viscous Fluid Mechanics 被引量:11
19
作者 Miao He Chao Wang +1 位作者 Xin Chang Sheng Huang 《Journal of Marine Science and Application》 2012年第3期295-300,共6页
The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separate... The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separated into two sub-domains, in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller, while hexahedral elements were used in the outer domain. The mesh was locally refined on the propeller surface and near the wake flow field, and a size function was used to control the growth rate of the grid. Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter (D) downstream. The numerical results show that the axial velocity fluctuates along the wake flow; radial velocity, which is closely related to vortices, attenuates strongly. The trailing vortices interact with the tip vortex at the blades' trailing edge and then separate. The strength of the vortex shrinks rapidly, and the radius decreases 20% at one diameter downstream. 展开更多
关键词 computational fluid dynamics (CFD) viscous fluid mechanics sub-domain hybrid mesh wakevelocity field
下载PDF
Numerical prediction of vortex flow and thermal separation in a subsonic vortex tube 被引量:5
20
作者 SMITH Eiamsa-ard PONGJET Promvonge 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1406-1415,共10页
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t... This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl. 展开更多
关键词 Vortex tube Cold mass fraction Swirl fiow Temperature separation Flow field
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部